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Interactive Decision Making

The agent interacts with the unknown environment and
aims to maximize its own reward.
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Interactive Decision Making

Can we perform sample-efficient learning for interactive decision making?

Exploration-exploitation tradeoff:

▶ Naive exploration incurs an exponential sample complexity (Kakade, 2003);

▶ Design algorithms with strategic exploration;

Large state space:

▶ Ω(
√
SAH2T ) lower bound for tabular RL (Jaksch et al., 2010);

▶ Sample-efficient learning for RL with (general) function approximation;

Partial observations:

▶ Ω(AH) lower bound for general POMDPs (Krishnamurthy et al., 2016);

▶ Identify tractable partially observable RL models and design efficient algorithms.
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Previous Works

1. Different complexity measures and algorithms;

2. Fully observable RL and partially observable RL are separate.
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Our Work

Propose a new complexity measure – Generalized Eluder Coefficient (GEC) – that can
capture nearly all known tractable RL problems.
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Our Work

Algorithm:

Generic posterior sampling algorithm;

Generic UCB-based algorithm;

Maximize to explore (MEX) algorithm;

Proposed algorithms can be implemented in both model-free and model-based
fashion, under both fully observable and partially observable settings.

Theory:

The above three algorithms enjoy the regret of

Õ(poly(dGEC, H) · T 1/2) or Õ(poly(dGEC, H) · T 2/3);

These three algorithms can learn low GEC problems sample-efficiently;

Match existing regret bounds for Bellman eluder dimension (Jin et al., 2021) and
bilinear class (Du et al., 2021).

A new and unified understanding of both fully observable
and partially observable RL.
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Interactive Decision Making

Episodic Interactive Decision Making (O,A, H,P, R)

O: observation space;

A: action space;

H: length of each episode;

P = {Ph}h∈[H]: Ph(oh+1 | τh) denotes the probability of generating the observation
oh+1 given the history τh = (o1:h, a1:h);

R = {Rh : O ×A 7→ R+}h∈[H]: reward functions;

Initial observation is sampled from a fixed distribution;

Assumption:
∑H

h=1 Rh ≤ 1.
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Policy, Value Function, and Learning Objective

Policy π = {πh}h∈[H]: πh : (O ×A)h−1 ×O → ∆A is a mapping from an
observation-action sequence to a distribution over actions.

Visitation probability Pπ(τh) = P(τh)× π(τh), where P(τh) and π(τh) are defined by

P(τh) =
h∏

h′=1

Ph(oh′ | τh′−1), π(τh) =

h∏
h′=1

πh′(ah′ | τh′−1, oh′).

Value function:

V π := Eπ

[ H∑
h=1

rh
]
.

Optimal policy: π∗ = argmaxπ V π, optimal value: V ∗ = V π∗
.

Learning objective: An online algorithm predicts {πt}Tt=1, its regret is defined as

Reg(T ) =
T∑

t=1

V ∗ − V πt

.
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Example 1: MDP

Episodic Markov Decision Process (MDP) (S,A, H,P, R)

O = S and Ph(xh+1 | x1:h, a1:h) = Ph(xh+1 | xh, ah);

Markov policy: π = {πh : S → ∆A};
V-function and Q-function

V π
h (x) := Eπ

[ H∑
h′=h

rh′(xh′ , ah′)
∣∣∣xh = x

]
,

Qπ
h(x, a) := Eπ

[ H∑
h′=h

rh′(xh′ , ah′)
∣∣∣xh = x, ah = a

]
.

Optimal policy π∗, optimal Q-function Q∗;

Bellman optimality equation:

Q∗
h(x, a) = (ThQ

∗
h+1)(x, a) := rh(x, a) + Ex′∼Ph(·|x,a) max

a′∈A
Q∗

h+1(x
′, a′);

Bellman residual:

Eh(Q, x, a) = Qh(x, a)− (ThQh+1)(x, a).
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Example 2: POMDP

Episodic partially observable Markov decision process (POMDP)

(S,O,A, H,P,O = {Oh}h∈[H], R),

Ph(xh+1 | x1:h, a1:h) = Ph(xh+1 | xh, ah),

Oh(o | x) is the probability of observing o at state x and step h;

Learning POMDPs:

Negative Results:

▶ exponential lower bound in the worst-case (Krishnamurthy et al., 2016);

Positive results:

▶ Weakly revealing POMDPs (Jin et al., 2020): O ≥ S and minh∈[H] σmin(Oh) ≥ α;

▶ Decodable POMDPs (Du et al., 2019; Efroni et al., 2022): ∃ unknown encoder
ϕ∗
h : O 7→ S such that ϕ∗

h(oh) = xh;

▶ latent MDP with sufficient test (Kwon et al., 2021), low-rank POMDP (Wang et al.,
2022), and regular PSR (Zhan et al., 2022).
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Function Approximation

General function approximation: hypothesis class H = H1 × · · ·HH ;

Model-based hypothesis: f = (Pf , rf ) ∈ H,

▶ πh,f : optimal policy corresponding to the model f ;

▶ Vh,f/Qh,f : optimal value/Q function corresponding to the model f ;

▶ f∗: true model; Vh,f∗ = Vh, Qh,f∗ = Qh;

Value-based hypothesis (for MDP): f = {Qh,f}h∈[H] ∈ H;

▶ πh,f (·) = argmaxa∈A Qh,f (·, a);
▶ Vh,f (·) = maxa∈A Qh,f (·, a);
▶ f∗ = Q∗;

Realizability assumption: f∗ ∈ H.
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Motivation

By the value decomposition lemma (Jiang et al., 2017), we have

T∑
t=1

V ∗ − V πft

︸ ︷︷ ︸
Reg(T )

=
T∑

t=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]︸ ︷︷ ︸
Bellman residual

+
T∑

t=1

(
V ∗ − Vft

)
︸ ︷︷ ︸

bias

≤
T∑

t=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
(if V ∗ ≤ Vft)

UCB-based algorithm: f t = argmaxf∈confidence set Vf to ensure optimism;

“Mismatch” between Goal and Guarantee:
▶ Goal: f t performs well on the unseen data τ t;

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
is small?

▶ Guarantee: f t is good on the historical dataset {τ1, τ2, · · · , τ t−1};
H∑

h=1

t−1∑
s=1

Eπfs

[
Eh(f t, xs

h, a
s
h)

2
]
is small.
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Challenge

Connect the Goal and Guarantee ≈ “generalization” from the past to the future:
▶ Goal: f t performs well on the unseen data τ t;

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
is small?

▶ Guarantee: f t is good on the historical dataset {τ1, τ2, · · · , τ t−1};
H∑

h=1

t−1∑
s=1

Eπfs

[
Eh(f t, xs

h, a
s
h)

2
]
is small.

In supervised learning, {zs}t−1
s=1 and an unseen zt are i.i.d. sampled from a fixed

distribution Ddata;
▶ Relizability + low hypothesis complexity (e.g., covering number) ensure generalization;

In RL, τ1 ∼ πf1 , τ2 ∼ πf2 , · · · , τ t ∼ πft , distribution shift exists all the time!

Require an additional structure assumption permits “generalization” from
the past to the future (in an online manner).
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Simplified Generalized Eluder Coefficient

Generalized Eluder Coefficient (GEC) is the smallest dGEC such that

T∑
t=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
︸ ︷︷ ︸

Goal: prediction error

≲

[
dGEC

H∑
h=1

T∑
t=1

t−1∑
s=1

Eπfs

[
Eh(f t, xs

h, a
s
h)

2
]

︸ ︷︷ ︸
Guarantee: training error

]1/2
.

On average, if f t ∈ H is consistent with the historical data, then the prediction error
on unseen t-th trajectory would also be small (but is amplified by GEC);

Optimism (V ∗ ≤ Vft) + low GEC + small training error ≈ low-regret learning:

Reg(T ) ≤
T∑

t=1

H∑
h=1

Eπft

[
Eh

(
f t, xt

h, a
t
h

)]
≲

[
dGEC

H∑
h=1

T∑
t=1

t−1∑
s=1

Eπfs

[
Eh(f

t, xs
h, a

s
h)

2]
︸ ︷︷ ︸

training error ≤ β

]1/2

≤
√

dGECHTβ.

For LinUCB (Chu et al., 2011), UCRL2 (Jaksch et al., 2010), UCRL-VTR (Ayoub
et al., 2020), GOLF (Jin et al., 2021)..., β only has a logarithmic dependency in T .
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Generalized Eluder Coefficient

T∑
t=1

V
ft − V

π
ft

=
T∑

t=1

H∑
h=1

Eπ
ft

[
Eh

(
f
t
, xh, ah

)]
︸ ︷︷ ︸

Goal: prediction error

≲

[
dGEC

H∑
h=1

T∑
t=1

t−1∑
s=1

Eπfs

[
Eh(f

t
, xh, ah)

2
]

︸ ︷︷ ︸
Guarantee: training error

]1/2
.

Definition (Generalized Eluder Coefficient)

Given a hypothesis class H, a discrepancy function ℓ = {ℓf}f∈H, an exploration policy
class Πexp, the generalized eluder coefficient GEC(H, ℓ,Πexp, ϵ) is the smallest d (d ≥ 0)
such that for any sequence of hypotheses and exploration policies
{f t, {πexp(f

t, h)}h∈[H]}t∈[T ]:

T∑
t=1

Vft − V
πft︸ ︷︷ ︸

prediction error

≤
[
d

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπexp(fs,h)ℓfs (f t, ξh)
)

︸ ︷︷ ︸
training error

]1/2
+ 2

√
dHT + ϵHT︸ ︷︷ ︸

burn-in cost

.

Flexible choices of discrepancy functions and exploration policies.

The GEC captures the hardness of exploration-exploitation trade-off by comparing
the out-of-sample prediction error with the in-sample training error;
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[
Eh(f

t
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]

︸ ︷︷ ︸
Guarantee: training error

]1/2
.

Definition (Generalized Eluder Coefficient)

Given a hypothesis class H, a discrepancy function ℓ = {ℓf}f∈H, an exploration policy
class Πexp, the generalized eluder coefficient GEC(H, ℓ,Πexp, ϵ) is the smallest d (d ≥ 0)
such that for any sequence of hypotheses and exploration policies
{f t, {πexp(f

t, h)}h∈[H]}t∈[T ]:

T∑
t=1

Vft − V
πft︸ ︷︷ ︸

prediction error

≤
[
d

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπexp(fs,h)ℓfs (f t, ξh)
)

︸ ︷︷ ︸
training error

]1/2
+ 2

√
dHT + ϵHT︸ ︷︷ ︸

burn-in cost

.

Flexible choices of discrepancy functions and exploration policies.

The GEC captures the hardness of exploration-exploitation trade-off by comparing
the out-of-sample prediction error with the in-sample training error;
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Generalized Eluder Coefficient: MDP Examples

Q-type problems :

T∑
t=1

Vft − V
πft ≤

[
dQ

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπfs Eh(f t, xh, ah)
2
)]1/2

.

V-type problems:

T∑
t=1

Vft − V
πft ≤

[
dV

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπfs◦hUnif(A)Eh(f t, xh, ah)
2
)]1/2

,

where πfs ◦h Unif(A) means executing πfs for the first h− 1 steps and then take a
random ah ∈ A.

Model-based problems:

T∑
t=1

Vft − V
πft ≤

[
d

H∑
h=1

T∑
t=1

t−1∑
s=1

Eπ̃D
2
H

(
Ph,ft (· | xh, ah),Ph,f∗ (· | xh, ah)

)]1/2
,

where π̃ is either πfs (Q-type) or πfs ◦h Unif(A) (V-type) and
D2

H(P,Q) = 1
2
· Ex∈P [(

√
dQ(x)/dP (x)− 1)2] is the Hellinger divergence.
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Relationship with Existing Complexity Measures

Bellman eluder dimension:

GEC ≤ Õ (HdQ) Q-type, GEC ≤ Õ(AHdV ) V-type;

Bilinear class:

GEC ≤ Õ(Hdbil) Q-type, GEC ≤ Õ(AHdbil) V-type;

Witness rank:

GEC ≤ Õ(HdQ/κ
2
wit), Q-type, GEC ≤ Õ(AHdV /κ2

wit), V-type.
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Relationship with Existing Complexity Measures

GEC (model-based POMDP version):

T∑
t=1

Vft − V πt

≤
[
dGEC

T∑
t=1

H−1∑
h=0

t−1∑
s=1

D2
H

(
Pπexp(f

s,h)

ft ,Pπexp(f
s,h)

f∗

)]1/2

,

where πexp(f
s, h) := πfs ◦h Unif(A) · · · ◦H Unif(A).

▶ α-revealing POMDPs:

GEC ≤ Õ
(
poly(S,A,H, 1/α)

)
,

▶ Decodable POMDPs:

GEC ≤ Õ
(
poly(S,A,H)

)
,

α-generalized regular PSR (new)1:
▶ Impose some regular condition on the observable operator representation (Jaeger,

2000) of PSR.
▶ Nearly all known tractable POMDPs satisfy this regular condition;
▶ With proper exploration policies:

GEC ≤ Õ
(
poly(complexity of PSR, H,A, 1/α)

)

1Independent works Liu et al. (2022); Chen et al. (2022) identify similar PSR classes with regular conditions
on observable operators (Jaeger, 2000).
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Summary of Relationships

GEC captures nearly all known tractable RL problems.
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Algorithmic Design to Use GEC

Reg(T ) =
T∑

t=1

V ∗ − V
πft =

T∑
t=1

Vft − V
πft︸ ︷︷ ︸

prediction error

+
T∑

t=1

V ∗ − Vft︸ ︷︷ ︸
bias

≲

[
dGEC

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπexp(fs,h)ℓfs (f t, ξh)
)

︸ ︷︷ ︸
training error

]1/2
+

T∑
t=1

(V ∗ − Vft )︸ ︷︷ ︸
bias

.

How to control the training error?

▶ The training error term is not available to the executed algorithm, e.g., the Bellman
operator, or the true transition kernel Pf∗ ;

▶ We need to approximate the training error by some loss functions and design effective
estimation to achieve a low training error.

How to control the bias term?

▶ UCB-based algorithms directly have V ∗ − Vft ≤ 0

▶ For other algorithms such as posterior sampling, V ∗ − Vft ≤ 0 is not directly available.
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A Generic Posterior Sampling Framework

Posterior sampling algorithm

Optimistic prior (Zhang, 2022): Choose the prior that favors the hypotheses with
higher values

p0(f) · exp(γVf ), γ > 0.

Loss function: Let

Lt−1
h (f) = Lh(f, {fs}s∈[t−1], {Ds

h}s∈[t−1])

be a proxy of the unknown training error
∑t−1

s=1 Eπexp(fs,h)ℓfs(f, ξh).

Posterior:

pt(f) ∝ p0(f) · exp
(
γVf +

H∑
h=1

Lt−1
h (f)

)
, f t ∼ pt(·).

Data collection: For any h ∈ [H], execute πexp(f
t, h) for Nbatch times and collect

samples Dt
h.
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Choices of Loss Functions (Model-free case)

Double sampling issue of model-free MDP (Antos et al., 2008):

Eπs [Qh,f (x
s
h, a

s
h)− rsh − Vh+1,f (x

s
h+1)︸ ︷︷ ︸

TD error

]2 = Eπs [Eh(f, xs
h, a

s
h)

2]︸ ︷︷ ︸
Goal: training error

+ σ2
h,f︸︷︷︸

Sampling variance

1 Minimax formulation (GOLF (Jin et al., 2021), Conditional PS (Dann et al., 2021))2

L
t
h(f) = −η

t∑
s=1

[Qh,f (x
s
h, a

s
h) − r

s
h − Vh+1,f (x

s
h+1)]

2

− log E
f̃h∼p0

h
(·)

[
exp

(
−η

t∑
s=1

[Qh,f̃ (x
s
h, a

s
h) − r

s
h − Vh+1,f (x

s
h+1)]

2

)]
,

▶ The introduced log term cancels the variance;
▶ The log term requires completeness to deal with;

2 Trajectory average with Nbatch i.i.d. data (OLIVE (Jiang et al., 2017), BiLin-UCB
(Du et al., 2021))

Lt
h(f) = −η

t∑
s=1

( 1

Nbatch

Nbatch∑
i=1

(
Qh,f (x

s
i,h, a

s
i,h)− rsi,h − Vh+1,f (x

s
i,h+1)

))2
;

▶ Sample mean admits a smaller variance: Var[X̄m] = 1
m
Var[X].

2Also used in some works on offline RL (Antos et al., 2008; Chen and Jiang, 2019).
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Choices of Loss Function (Model-based case)

For MDPs, we choose

Lt
h(f) = η

t∑
s=1

log Ph,f (x
s
h+1 | xs

h, a
s
h),

where Ds
h = (xs

h, a
s
h, x

s
h+1) is the tuple induced by πexp(f

s, h).

For POMDPs and PSRs, we choose

Lt
h(f) = η

t∑
s=1

log Pf (τ
s
h),

where Ds
h = τs

h is the trajectory induced by πexp(f
s, h).
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UCB Algorithm

UCB Algorithm

Given the past t− 1 iterations, we maintain a confidence set Ht ⊂ H such that
f∗ ∈ Ht with high probability;

Choose the most optimistic hypothesis f t:

f t = argmax
f∈Ht

Vf

Execute exploration policies {πexp(f
t, h)}h∈[H] to collect data

Extend previous UCB algorithms (LinUCB, UCRL2, UCRL-VTR, GOLF, BiLinUCB,
OMLE, ...) to a more general class (problems with low GEC);

Theoretical analysis is relatively simple and well-understood;

Hard to implement: need to solve a constrained optimization problem
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Maximize to Explore

Maximize to Explore

Given the past t− 1 iterations, we choose a proper loss Lt−1
h (f);

Choose the hypothesis f t:

f t = argmax
f

{
Vf − η ·

H∑
h=1

Lt−1
h (f)

}
.

An optimistic modification of loss minimization problem.

Execute exploration policies {πexp(f
t, h)}h∈[H] to collect data

Easy to implement: only need to optimize an unconstrained objective.
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Summary of Algorithm Design

Reg(T ) =
T∑

t=1

V ∗ − V
πft =

T∑
t=1

Vft − V
πft +

T∑
t=1

V ∗ − Vft

≲

[
dGEC

H∑
h=1

T∑
t=1

( t−1∑
s=1

Eπexp(fs,h)ℓfs (f t, ξh)
)

︸ ︷︷ ︸
training error

]1/2
+

T∑
t=1

(V ∗ − Vft )︸ ︷︷ ︸
bias

.

How to control the training error?

▶ Choose proper loss functions to approximate the training error.

▶ Choose proper exploration policies to collect data.

How to control the bias term?

▶ Optimistic posterior sampling

▶ UCB-based algorithm

▶ Maximize to explore (MEX)
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Theory

Theorem ((Zhong et al., 2022; Liu et al., 2023))

The above three algorithms enjoy the following regret bounds:

1 Value-based approach for MDPs
▶ Minimax formulation with Realizability + Completeness: Õ

(√
dGEC ·HT · log |H|

)
;

▶ Trajectory average with Realizability: Õ
(
(d2GECH log |H|)1/3 · T 2/3

)
a;

2 Model-based approach for MDP, POMDP, and PSR:
▶ Realizability: Õ

(√
dGEC ·HT · log |H|

)
.

aAlso holds for PO-bilinear class.

Interactive decision making with low GEC is learnable.

Matches existing bound for Bellman eluder dimension (Jin et al., 2021) and Bilinear
class (Du et al., 2021).

Optimistic modification + Low GEC + Effective training error estimation
≈ Sample-efficient learning.

Han Zhong (PKU) Generalized Eluder Coefficient (GEC) June 20, 2023 32 / 45



Table of Contents

1 Overview

2 Problem Setup

3 Complexity Measure – GEC

4 Algorithm Design

5 Discussions

Han Zhong (PKU) Generalized Eluder Coefficient (GEC) June 20, 2023 33 / 45



Comparison with Decision Estimation Coefficient (Foster et al., 2021)

Similarities:

Universality: subsume most of the known tractable RL problems;

Reduction-based idea: convert regret minimization to new target;

Differences:

Different reduction ideas: in-sample estimation v.s. online learning;

Different policy selection strategies: simple strategy v.s. minimax subroutine;

Algorithm design:
▶ GEC: flexible in algorithmic design: i) Posterior sampling, ii) UCB-based algorithm,

and iii) Maximize to explore;
▶ DEC: restrictive algorithm design: Estimation to decision-making (E2D);

Regret upper bound:
▶ GEC: match the best-known results;
▶ DEC: suboptimal T 3/4 regret bound (Foster et al., 2022) for bilinear class;

Lower bound: DEC also characterizes the lower bound of the RL problems.
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Conclusion

New complexity measure – GEC – that can capture nearly all known tractable
interactive decision making problems.

reduce the out-of-sample prediction error to the in-sample training error.

Three efficient algorithms for interactive decision making with low GEC.

optimistic modification + an effective sequential estimation of training error.

A new and unified understanding for both fully observable
and partially observable RL.

Thank you!
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Relationship with Eluder Dimension (Jin et al., 2021)

Definition (ϵ-independence between distributions)

Let G be a function class defined on X , and ν, µ1, · · · , µn be probability measures over
X . We say ν is ϵ-independent of {µ1, µ2, · · · , µn} with respect to G if there exists g ∈ G
such that

√∑n
i=1(Eµi [g])

2 ≤ ϵ but |Eν [g]| > ϵ.
The distributional eluder dimension dimDE(G,Π, ϵ) is the length of the longest sequence
{ρ1, · · · , ρn} ⊂ Π such that there exists ϵ′ ≥ ϵ with ρi being ϵ′-independent of
{ρ1, · · · , ρi−1} for all i ∈ [n].

Let (I − Th)H := {(x, a) → (fh − Thfh+1)(x, a) : f ∈ H},
(I − Th)VH := {x → (fh − Thfh+1)(x, πfh(x)) : f ∈ H} be the set of Q/V type
Bellman residuals induced by H at step h;

The Q/V-type ϵ-BE dimension of H with respect to Π is defined as

dQ/dV := max
h∈[H]

{
dimDE

(
(I − Th)H/dimDE(I − Th)HV ,Πh, ϵ

)}
.

We have GEC ≤ Õ (HdQ) and GEC ≤ Õ(AHdV ).
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Relationship with Bilinear Class (Du et al., 2021)

Definition (Bilinear Class)

We say the RL problem is in a Bilinear class if there exist functions Wh : H → V and
Xh : H → V for a Hilbert space V, such that ∀f ∈ H and h ∈ [H], we have∣∣Eπf Eh(f, xh, ah)

∣∣ ≤ |⟨Wh(f)−Wh (f∗) , Xh(f)⟩| ,∣∣Exh∼πf ,ah∼π̃ [lf (g, ζh)]
∣∣ = |⟨Wh(g)−Wh (f∗) , Xh(f)⟩| ,

where l is a loss function with ζh = (xh, ah, rh, xh+1) and π̃ is either πf (Q-type) or πg

(V-type). The complexity of a bilinear class is characterized by the information gain:
γT (ϵ,X ) =

∑H
h=1 γT (ϵ,Xh) with Xh = {Xh(f) : f ∈ H}.

With ℓf ′(f, xh, ah) = |Exh+1|xh,ah
lf ′(f, ζh)|2, we have

GEC ≤ 2γT (ϵ,X ) Q-type, GEC ≤ 2AγT (ϵ,X ), V-type.
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Relationship with Witness Rank (Sun et al., 2019)

Definition (Q-type/V-type Witness Rank)

Given a discriminator class V = {Vh : S ×A× S → [0, 1]}h∈[H]. We say an MDP has
witness rank d if given two models f, g ∈ H, there exists Xh : H → Rd and
Wh : H → Rd such that

max
v∈Vh

Exh∼πf ,ah∼π̃ [Ex′∼Ph,g(·|xh,ah)v(xh, ah, x
′
) − Ex′∼Ph,f∗ (·|xh,ah)v(xh, ah, x

′
)]

≥ ⟨Wh(g), Xh(f)⟩ ,

κwit · Exh∼πf ,ah∼π̃ [Ex′∼Ph,g(·|xh,ah)Vh+1,g(x
′
) − Ex′∼Ph,f∗ (·|xh,ah)Vh+1,g(x

′
)]

≤ ⟨Wh(g), Xh(f)⟩ ,

where π̃ is either πf (Q-type) or πg (V-type), and κwit ∈ (0, 1].

With details as in the model-based examples, we have

GEC ≤ 4dQH · log( ϵ+ T

ϵ
)/κ2

wit, Q-type,

GEC ≤ 4dV AH · log( ϵ+ T

ϵ
)/κ2

wit, V-type.
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Example 3: Predictive State Representations (PSR)

Predictive State Representation (PSR)

History τh = (o1:h, a1:h) = (o1, a1, . . . , oh, ah);

Test (future) th+1 = (oh+1:h+W , ah+1:h+W−1), where length W ∈ N+;

System dynamics matrix Dh: i) tests as rows and histories as columns; and ii) the
(th+1, τh)-th entry of Dh is equal to P(th+1|τh);
PSR rank dPSR: dPSR = maxh∈[H] dPSR,h, where Rank(Dh) = dPSR,h;

Observable Operator Representation (Jaeger, 2000): given a PSR with a core test
set {Uh}h∈[H], there exists a set of matrices

{Mh(o, a) ∈ R|Uh+1|×|Uh|}o∈O,a∈A,h∈[H],q0 ∈ R|U1| that can characterize its
dynamics:

P(τH) = MH(oH , aH)MH−1(oH−1, aH−1) · · ·M1(o1, a1)q0.

Connection with POMDP

dPSR ≤ S: Dh = [P(th+1|τh)] = [P(th+1|sh+1)]× [P(sh+1|τh)]
For one step revealing/decodable POMDPs, we can choose Uh = O

Mh(oh, ah) = Oh+1︸ ︷︷ ︸
RO×S

Th,ah︸ ︷︷ ︸
RS×S

diag (Oh(oh | ·))︸ ︷︷ ︸
RS×S

O†
h︸︷︷︸

RS×O

∈ RO×O, q0 = O1µ1 ∈ RO.
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Relationship with Existing Complexity Measures

Definition (α-Generalized Regular PSR)

1. For any h ∈ [H] and x ∈ R|Uh|, it holds that

max
π

∑
oh:H ,ah:H

|MH(oH , aH) · · ·Mh(oh, ah)x| · π(oh:H , ah:H) ≤ ∥x∥1
α

,

where τh:H = (oh:H , ah:H) ∈ (O ×A)H−h+1.

2. For any h ∈ [H − 1] and x ∈ R|Uh|, it holds that

max
π

∑
(oh,ah)∈O×A

∥Mh(oh, ah)x∥1 · π(oh, ah) ≤
|UA,h+1|

α
∥x∥1,

where UA,h+1 is the the action sequences in the core test set Uh+1.
a

aIndependent works Liu et al. (2022); Chen et al. (2022) identify similar PSR classes with regular conditions
on observable operators.

Any revealing POMDP is an α/
√
S-generalized regular PSR.

Any decodable POMDP is a 1-generalized regular PSR.

Latent MDPs with the full-rank test, low-rank POMDPs, regular PSR, ...
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Generalized Regular PSR Examples

GEC (model-based POMDP/PSR version):

T∑
t=1

Vft − V πt

≤
[
dGEC

T∑
t=1

H−1∑
h=0

t−1∑
s=1

D2
H

(
Pπexp(f

s,h)

ft ,Pπexp(f
s,h)

f∗

)]1/2

,

where πexp(f
s, h) := πfs ◦hUnif(A)◦h+1Unif (UA,h+1) and UA,h+1 = Am−1 for

m-step revealing/decodable POMDPs.

Theorem (GEC of Generalized Regular PSR)

For α-generalized regular PSR

GEC ≤ Õ
(dPSR ·A3U4

AH

α4

)
,

where dPSR is the PSR rank and UA = maxh∈[H] |UA,h|.
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Decision-Estimation Coefficient

DEC (Foster et al., 2021) is another complexity measure that is very general to cover
most of the known tractable problems. We consider a set of models M and Hellinger
distance D2

H :

decγ(M, M̂t) = inf
pt∈∆(Π)

sup
M∈M︸ ︷︷ ︸

worst-case

Eπt∼pt [ RegMt︸ ︷︷ ︸
regret when M is true model

−γ ·D2
H(M(πt), M̂t(πt))︸ ︷︷ ︸

Easy to control

],

Convert our target (not easy to control) within one iteration to something we know
how to control (assumption 4.1 of (Foster et al., 2021)):

Eπt∼ptRegt ≤ decγ(M, M̂t) + γEπt∼ptD
2
H

(
M∗(πt), M̂t(πt)

)
,

where M̂t is a sequence of estimation and pt is the solution in the definition of DEC.

DEC is the worst-case cost for such a transformation from a game viewpoint and I
think that is why DEC is also very close to the lower bound;

We have

EReg(T ) ≤
T∑

t=1

decγ(M, M̂t)︸ ︷︷ ︸
Cost of transformation

+ γ ·
T∑

t=1

Eπt∼pt [D
2
H

(
M∗(πt), M̂t(πt)

)
]︸ ︷︷ ︸

New target: online learning

. (1)
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Decoupling Coefficient

Decoupling coefficient (Zhang, 2022; Agarwal and Zhang, 2022b,a) is a complexity
measure that has applied to model-free/model-based RL and contextual bandit. We
illustrate the main idea by the contextual bandit version. We consider a value class
F = {f : S ×A → [−1, 1]}:

E
ft∼qt,at=aft

(xt))
V1,ft (x

t
) − V

∗
1 (x

t
, a

ft
(x

t
))︸ ︷︷ ︸

Feel-good regret

≤
dDC

4µ
+ µEat∼qt(at|xt,St−1)Eft∼qt

(
Q1,ft (x

t
, a

t
) − Q

∗
1(x

t
, a

t
)
)2︸ ︷︷ ︸

Easy to control

.

where we use af (x) := argmaxa′∈A Q1,f (x, a
′). DC shares similar spirits with DEC but

is different in:

1 Feel-good term: V1,ft(xt, aft

(xt))− V ∗
1 (xt, af∗(xt)): we favor f with large value;

2 Flexible choice of policy distribution: suppose that f t ∼ qt:
▶ DC directly picks πt = πft : pt(π) :=

∑
f∈H:πf=π qt(f);

▶ DEC solves the minimax problem of definition to get:

pt(π) = argmin
p∈∆(Π)

sup
f∈H

Eπt∼pt [ RegMt︸ ︷︷ ︸
regret when f is true model

−γ · Eft∼qt D
2
H(f(πt), f

t(πt))︸ ︷︷ ︸
Easy to control

];

3 Flexible choice of notion of new target.
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Reduction-based Framework

GEC reduces out-of-sample V1,ft to in-sample error estimation:
1 A low GEC: model-based + model-free;
2 An effective in-sample error estimator;
3 Handle the difference between V1,f and V ∗

1 ;

Reg(T ) ≲
[
dGEC ·

T∑
t=1

t−1∑
s=1

ℓ
s
(f

t
)
]1/2

≤ γ

T∑
t=1

t−1∑
s=1

ℓ
s
(f

t
)︸ ︷︷ ︸

New target: in-sample estimation

+
1

γ
· dGEC.

DEC reduces out-of-sample V ∗
1 to another out-of-sample target:

1 A low DEC: model-based;
2 An effective online learning oracle;

EReg(T ) ≤
T∑

t=1

dec
H
γ (M, µ

t
)︸ ︷︷ ︸

Cost of transformation

+ γ ·
T∑

t=1

Eπt∼ptEM̂t∼µt

[
D

πt
(
M̂t||M∗)]

︸ ︷︷ ︸
New target: online learning

.

DC/O-DEC reduces out-of-sample V1,ft to another optimistic out-of-sample target:
1 A low complexity measure: model-based + model-free;
2 An effective online learning oracle;
3 Handle the difference between V1,f and V ∗

1 .

EReg(T ) ≤
T∑

t=1

odec
D
γ (M, µ

t
)︸ ︷︷ ︸

Cost of transformation

+ γ ·
T∑

t=1

Eπt∼ptEM̂t∼µt

[
D

πt
(
M̂t||M∗) − γ

−1
∆V

1,M̂t
(x1)

]
︸ ︷︷ ︸

New target: online learning with feel-good term

.
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