Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets

Joint work with Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang

Han Zhong Peking University

- Motivation and background
- Formulation and objectives
- Learning two-player zero-sum Markov games with offline datasets
- Conclusion and future directions

Outline

Go

Multi-agent

Success of RL

Poker

Dota

Decision-Making

AlphaGo Zero: trained on 3×10^7 games, and took 40 days

+

Goal: design computationally efficient and sample-efficient learning algorithms

Challenges of RL

Computational Efficiency

Online RL v.s. Offline RL

Online RL: Learn from interactions Exploration v.s. exploitation

Online Reinforcement Learning

Agent

Offline RL: Learn from datasets Data distribution shift

Offline Reinforcement Learning

Agent

Online RL v.s. Offline RL

Healthcare

In these scenarios, either collecting data is costly and risky, or online exploration is impossible

Auto-Driving

Offline Multi-Agent RL (MARL)

Q1: Can we design sample-efficient equilibrium learning algorithms in offline MARL?

Q2: What is the necessary and sufficient condition for achieving sample efficiency in offline MARL?

Formulation and Objective: Offline Two-player Zero-sum Markov Game

Two player zero-sum Markov Game (MG) $(\mathcal{S}, \mathcal{A}_1, \mathcal{A}_2, H, r, \mathbb{P})$

- S: set of states; $\mathscr{A}_1, \mathscr{A}_2$: set of actions for the max-player/ the min-player
- *H*: horizon (the length of the game)
- $r_h(s_h, a_h, b_h) \in [0, 1]$: reward function at step h
- $\mathbb{P}_h(s_{h+1} \mid s_h, a_h, b_h)$: transition probability at step h

Policy, value function, and Nash equilibria

• V-function:
$$V_h^{\pi,\nu}(s_h) := \mathbb{E}_{\pi,\nu} \Big[\sum_{h'=h}^H r_{h'}(s_{h'}, a_{h'}, b_{h'}) \mid s_h \Big].$$

• Q-function: $Q_h^{\pi,\nu}(s_h, a_h, b_h) := \mathbb{E}_{\pi,\nu} \Big[\sum_{h'=h}^H r_{h'}(s_{h'}, a_{h'}, b_{h'}) \mid s_h, a_h, b_h \Big].$

• Best response:
$$V_h^{\pi,*} = V_h^{\pi,\text{br}(\pi)} = \inf_{\nu} V_h^{\pi,\nu}, \quad V_h^{*,\nu} = V_h^{\text{br}(\nu),\nu} = \max_{\pi} V_h^{\pi,\nu}$$

 \bullet

• Policy: for the max-player: $\pi = \{\pi_h : S \to \Delta(\mathscr{A}_1)\}$; for the min-player $\nu = \{\nu_h : S \to \Delta(\mathscr{A}_2)\}$.

Nash equilibrium (NE): We say (π^*, ν^*) is an NE if π^* and ν^* are the best response to each other.

Metric (Sub-optimality gap): For any (π, ν) and $x \in S$: SubOpt $((\pi, \nu), x) = V_1^{*,\nu}(x) - V_1^{\pi,*}(x)$.

Data Collection Process

Assumption: The dataset $\mathscr{D} = \{(s_h^{\tau}, a_h^{\tau}, b_h^{\tau})\}_{\tau, h=1}^{K, H}$ is compliant with the underlying MG:

$$\mathbb{P}_{\mathscr{D}}\left(r_{h}^{\tau}=r, s_{h+1}^{\tau}=s \mid \{(s_{h}) \in \mathbb{P}_{h}\left(r_{h}=r, s_{h+1}\right) \in \mathbb{P}_{h}\left(r_{h}=r, s_{h+1}\right) \in \mathbb{P}_{h}\left(r_{h}=r, s_{h+1}\right)$$

- Markov property + compliant with the underlying MG lacksquare
- This assumption holds if the dataset is collected by a fixed behavior policy.
- Sequentially adjusted actions (a_h^{τ})

- $\{s_{h}^{i}, a_{h}^{i}, b_{h}^{i}\}_{i=1}^{\tau}, \{(r_{h}^{i}, s_{h+1}^{i})\}_{i=1}^{\tau-1}\}$ $= s | s_h = s_h^{\tau}, a_h = a_h^{\tau}, b_h = b_h^{\tau}),$
- for all $h \in [H], s \in S$, where \mathbb{P} is taken with respect to the underlying MG.

$$(b_h^{\tau})$$

Linear Function Approximation

- Q-function admits a linear form: $Q_h^{\pi,\nu}(x,a,b) = \langle \phi(x,a,b), w_h^{\pi,\nu} \rangle$
- Notation: $\phi_h^{\tau} = \phi(s_h^{\tau}, a_h^{\tau}, b_h^{\tau}), \phi_h = \phi(s_h, a_h, b_h)$

Linear MG (Xie et al., 2020) $r_h(x, a, b) = \phi(x, a, b)^{\mathsf{T}} \theta_h, \quad \mathbb{P}_h(\cdot \mid x, a, b) = \phi(x, a, b)^{\mathsf{T}} \mu_h(\cdot).$

Existing Results for Offline MDP

- ullet
- Tabular (Rajaraman et al., 2021, Xie et al., 2021, Uehara and Sun 2021): \bullet

Linear (Jin et al., 2021, Zenette et al., 2021, Yin et al., 2022): $\mathbb{E}_{\pi^*}\left[\sum_{h=1}^{H} \phi_h^\top \Lambda_h^{-1} \phi_h\right], \quad \text{where } \Lambda_h = \sum_{k=1}^{K} \phi_h^k (\phi_h^k)^\top + \lambda \cdot I$ \bullet

Q: Single policy (NE) coverage is necessary and sufficient?

Single policy (optimal policy) coverage is the necessary and sufficient condition for achieving sample-efficiency.

 $\sup_{s,a,h} \frac{d_h^{\pi^*}(s,a)}{\mu_h(s,a)}$

Single Policy (NE) Coverage is Insufficient

SubOpt_{$$\mathcal{M}_1$$}(($\hat{\pi}, \hat{\nu}$),

What Coverage Condition is Sufficient?

 $\{(\pi, \nu) : (\pi, \nu) \text{ is arbitrary}\}$

Ensure that π^* and ν^* are the best response to each other — the definition of NE

 $\{(\pi^*, \nu) : \nu \text{ is arbitrary}\} \cup \{(\pi, \nu^*) : \pi \text{ is arbitrary}\}$

Pessimistic Minimax Value Iteration (PMVI)

- Estimate linear coefficients (least-squares regression)
- Estimate Q-functions (pessimism)
- Calculate the output policy pair (NE subroutines)

Estimate Linear Coefficients

- Initialization: Set $\underline{V}_{H+1}(\cdot) = \overline{V}_{H+1}(\cdot) = 0.$ •
- At h-th step, we estimate the linear coefficients by solving the following least-squares regression problem: •

$$\underline{w}_{h} \leftarrow \operatorname{argmin}_{w} \sum_{\tau=1}^{K} [r_{h}^{\tau} + \underline{V}_{h+1}(x_{h+1}^{\tau}) - (\phi_{h}^{\tau})^{\mathsf{T}}w]^{2} + ||w||_{2}^{2},$$
$$\overline{w}_{h} \leftarrow \operatorname{argmin}_{w} \sum_{\tau=1}^{K} [r_{h}^{\tau} + \overline{V}_{h+1}(x_{h+1}^{\tau}) - (\phi_{h}^{\tau})^{\mathsf{T}}w]^{2} + ||w||_{2}^{2}.$$

Solving the above equation gives ullet

$$\begin{split} \underline{w}_{h} &\leftarrow \Lambda_{h}^{-1} \left(\sum_{\tau=1}^{K} \phi_{h}^{\tau} (r_{h}^{\tau} + \underline{V}_{h+1}(x_{h+1}^{\tau}))\right), \\ \overline{w}_{h} &\leftarrow \Lambda_{h}^{-1} \left(\sum_{\tau=1}^{K} \phi_{h}^{\tau} (r_{h}^{\tau} + \overline{V}_{h+1}(x_{h+1}^{\tau}))), \\ \text{where } \Lambda_{h} &\leftarrow \sum_{\tau=1}^{K} \phi_{h}^{\tau} (\phi_{h}^{\tau})^{\mathsf{T}} + I. \end{split}$$

• Pessimistic estimators:

$$\underline{Q}_{h}(\cdot,\cdot,\cdot) \leftarrow \Pi_{H-h+1}$$

$$\overline{Q}_{h}(\cdot,\cdot,\cdot) \leftarrow \Pi_{H-h+1}$$

• Penalty term:

$$\Gamma_h(\,\cdot\,,\,\cdot\,,\,\cdot\,)=\beta\sqrt{}$$

Estimate Q-functions

 ${}_{1}\{\phi(\cdot,\cdot,\cdot)^{\mathsf{T}}\underline{w}_{h}-\Gamma_{h}(\cdot,\cdot,\cdot)\},\$ ${}_{1}\{\phi(\cdot,\cdot,\cdot)^{\mathsf{T}}\overline{w}_{h}+\Gamma_{h}(\cdot,\cdot,\cdot)\}.$

 $\phi(\cdot,\cdot,\cdot)^{\mathsf{T}}\Lambda_{h}^{-1}\phi(\cdot,\cdot,\cdot)$

Calculate the Output Policy Pair: NE Subroutine

• Solve two normal-form game:

$$\begin{aligned} &(\hat{\pi}_{h}(\cdot \mid \cdot), \nu_{h}'(\cdot \mid \cdot)) \leftarrow \operatorname{NE}(\underline{Q}_{h}(\cdot , \cdot , \cdot)), \\ &(\pi_{h}'(\cdot \mid \cdot), \hat{\nu}_{h}(\cdot \mid \cdot)) \leftarrow \operatorname{NE}(\overline{Q}_{h}(\cdot , \cdot , \cdot))). \\ &\vdots \\ & \underline{V}_{h}(\cdot) \leftarrow \mathbb{E}_{a \sim \hat{\pi}_{h}(\cdot \mid \cdot), b \sim \nu_{h}'(\cdot \mid \cdot)} \underline{Q}_{h}(\cdot , a, b), \\ & \overline{V}_{h}(\cdot) \leftarrow \mathbb{E}_{a \sim \pi_{h}'(\cdot \mid \cdot), b \sim \hat{\nu}_{h}(\cdot \mid \cdot)} \overline{Q}_{h}(\cdot , a, b). \end{aligned}$$

$$\begin{aligned} (\hat{\pi}_{h}(\cdot \mid \cdot), \nu_{h}'(\cdot \mid \cdot)) &\leftarrow \operatorname{NE}(\underline{Q}_{h}(\cdot , \cdot , \cdot)), \\ (\pi_{h}'(\cdot \mid \cdot), \hat{\nu}_{h}(\cdot \mid \cdot)) &\leftarrow \operatorname{NE}(\overline{Q}_{h}(\cdot , \cdot , \cdot))). \end{aligned}$$

S:

$$\underbrace{V_{h}(\cdot) \leftarrow \mathbb{E}_{a \sim \hat{\pi}_{h}(\cdot \mid \cdot), b \sim \nu_{h}'(\cdot \mid \cdot)} \underline{Q}_{h}(\cdot , a, b), \\ \overline{V}_{h}(\cdot) \leftarrow \mathbb{E}_{a \sim \pi_{h}'(\cdot \mid \cdot), b \sim \hat{\nu}_{h}(\cdot \mid \cdot)} \overline{Q}_{h}(\cdot , a, b). \end{aligned}$$

Calculate V-functions lacksquare

• Output: $(\hat{\pi} = {\hat{\pi}_h}_{h=1}^H, \hat{\nu} = {\hat{\nu}_h}_{h=1}^H).$

Main Results for PMVI

SubOpt $((\hat{\pi}, \hat{\nu}), x)$

A new notion: Relative Uncertainty: lacksquare

$$\operatorname{RU}(\mathcal{D}, x) = \inf_{(\pi^*, \nu^*) \text{ is NE}} \left\{ \max\left\{ \sup_{\nu} \sum_{h=1}^{H} \mathbb{E}_{\pi^*, \nu} \left[\sqrt{\phi_h^{\top} \Lambda_h^{-1} \phi_h} \, \middle| \, s_1 = x \right], \sup_{\pi} \sum_{h=1}^{H} \mathbb{E}_{\pi, \nu^*} \left[\sqrt{\phi_h^{\top} \Lambda_h^{-1} \phi_h} \, \middle| \, s_1 = x \right] \right\} \right\}$$

- Data-dependent bound: $\Lambda = {\Lambda_h}_{h \in [H]}$ is decided by the offline dataset.
- Only depends on how well $\{(\pi^*, \nu) : \nu \text{ is arbitrary}\} \cup \{(\pi, \nu^*) : \pi \text{ is arbitrary}\}$ are covered no requirement on coverage of all policy pairs.
- Low relative uncertainty is the sufficient condition for achieving sample-efficiency. lacksquare

Theorem: Let $\beta = O(dH \log(dHK/p))$, it holds with probability at least 1 - p that

$$x \le 4\beta \cdot \mathrm{RU}(\mathcal{D}, x).$$

Main Results for PMVI

Sufficient Coverage of Relative Information $\Lambda_h \ge I + c_1 \cdot K \cdot \max\left\{\sup_{\nu} \mathbb{E}_{\pi^*,\nu}\left[\phi_h \phi_h^\top \mid s_1 = x\right], \sup_{\pi} \mathbb{E}_{\pi,\nu^*}\left[\phi_h \phi_h^\top \mid s_1 = x\right]\right\}.$

SubOpt $((\hat{\pi}, \hat{\nu}), x)$

$$f(x) \le \tilde{\mathcal{O}}(d^{3/2}H^2K^{-1/2})$$

Well-Explored Dataset

Suppose the dataset is collected by a fixed behavior policy pair $(\bar{\pi}, \bar{\nu})$. Moreover $\lambda_{\min}(\mathbb{E}_{\bar{\pi},\bar{\nu}}[\phi_h\phi_h^{\top}]) \ge c, \quad \forall h \in [H].$

$$\tilde{\psi}(x), x \Big) \le \tilde{\mathcal{O}}(dH^2K^{-1/2})$$

Proof Sketch

SubOpt
$$((\hat{\pi}, \hat{\nu}), x) = V_1^{*, \hat{\nu}}(x) - V_1^{\hat{\pi}, *}(x) = \underbrace{V_1^{*, \hat{\nu}}(x) - V_1^{*}(x) + \underbrace{V_1^{*}(x) - V_1^{\hat{\pi}, *}(x)}_{(i)}}_{(i)}$$

$$\begin{aligned} (\mathbf{i}) &= V_1^{*,\hat{\nu}}(x) - V_1^*(x) \\ &\leq \overline{V}_1(x) - V_1^*(x) \quad V_1^{*,\hat{\nu}}(x) \leq \overline{V}_1(x) \text{ (Pessimism)} \\ &\leq \overline{V}_1(x) - V_1^{\pi',\nu^*}(x) \quad V_1^*(x) \leq V_1^{\pi',\nu^*}(x) \text{ (definition of NE)} \\ &= \sum_{h=1}^{H} \mathbb{E}_{\pi',\nu^*} \Big[\langle \overline{\mathcal{Q}}_h(s_h, \cdot, \cdot), \pi_h'(\cdot | x) \otimes \hat{\nu}_h(\cdot | x) - \pi_h'(\cdot | s_h) \otimes \nu_h^*(\cdot | s_h) \rangle | s_1 = x \Big] \quad \text{Decomposition Lemma} \\ &- \sum_{h=1}^{H} \mathbb{E}_{\pi',\nu^*} [\overline{\iota}_h(s_h, a_h, b_h) | s_1 = x] \quad \overline{\iota}_h(x, a, b) = \mathbb{E}[r_h(s_h, a_h, b_h) + \overline{V}_{h+1}(s_{h+1}) | (s_h, a_h, b_h) = (x, a, b)] - \\ &\leq 2 \sum_{h=1}^{H} \mathbb{E}_{\pi',\nu^*} [\Gamma_h(s_h, a_h, b_h) | s_1 = x] \quad \text{Definition of output policy & Pessimism} \\ &\leq 2\beta \cdot \text{RU}(\mathcal{D}, x) \quad \text{Definitions of } \Gamma_h \text{ and } \text{RU}(\mathcal{D}, x) \end{aligned}$$

 $-\overline{Q}_h(x,a,b)$

Low Relative Uncertainty is Necessary?

Q: Is there a coverage assumption weaker than low relative uncertainty but stronger than NE coverage that empowers efficient offline learning?

Low Relative Uncertainty is Necessary

Low relative uncertainty is necessary

Minimax Lower Bound:

$$\frac{(\operatorname{Algo}(\mathscr{D});x)}{\operatorname{J}(\mathscr{D},x)} \geqslant C',$$

where C' is an absolute constant and x is the initial state. The expectation is taken with respect to $\mathbb{P}_{\mathscr{D}}$.

♥

Conclusion and Future Directions

- algorithm for offline linear MGs
- General function approximations, offline general-sum MGs...

We propose the first computationally efficient and nearly minimax optimal

• We figure out that low relative uncertainty is the necessary and sufficient condition for achieving sample efficiency in offline linear MGs setup

Paper: https://arxiv.org/abs/2202.07511

