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Success of RL

Go Poker Dota

Multi-agent Decision-Making+



Challenges of RL

Computational 
Efficiency

Sample

Efficiency +

AlphaGo Zero: trained on  games, and took  days   3 × 107 40

Goal: design computationally efficient and 
sample-efficient learning algorithms



Online RL v.s. Offline RL
Offline RL:


Learn from datasets

Data distribution shift

Online RL:

Learn from interactions


Exploration v.s. exploitation 



Online RL v.s. Offline RL

Healthcare Auto-Driving

In these scenarios, either collecting data is costly 
and risky, or online exploration is impossible 



Offline Multi-Agent RL (MARL)

Q1: Can we design sample-efficient equilibrium 
learning algorithms in offline MARL?

Q2: What is the necessary and sufficient 
condition for achieving sample efficiency in 

offline MARL?




Formulation and Objective:    
Offline Two-player Zero-sum 

Markov Game



Two player zero-sum Markov Game (MG) (𝒮, 𝒜1, 𝒜2, H, r, ℙ)

• : set of states; : set of actions for the max-player/ the min-player


• : horizon (the length of the game)


• : reward function at step 


• : transition probability at step 

𝒮 𝒜1, 𝒜2
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Policy, value function, and Nash equilibria

• Policy: for the max-player: ; for the min-player .


• V-function:


• Q-function: 


• Best response:


• Nash equilibrium (NE): We say  is an NE if  and  are the best response to each other.

π = {πh : 𝒮 → Δ(𝒜1)} ν = {νh : 𝒮 → Δ(𝒜2)}

(π*, ν*) π* ν*

Vπ,ν
h (sh) : = 𝔼π,ν[

H

∑
h′￼=h

rh′￼
(sh′￼

, ah′￼
, bh′￼

) ∣ sh] .

Qπ,ν
h (sh, ah, bh) : = 𝔼π,ν[

H

∑
h′￼=h

rh′￼
(sh′￼

, ah′￼
, bh′￼

) ∣ sh, ah, bh] .

Vπ,*
h = Vπ,br(π)

h = inf
ν

Vπ,ν
h , V*,ν

h = Vbr(ν),ν
h = max

π
Vπ,ν

h .

Metric (Sub-optimality gap): For any  and :(π, ν) x ∈ 𝒮
SubOpt((π, ν), x) = V*,ν

1 (x) − Vπ,*
1 (x) .



Data Collection Process
Assumption: The dataset  is compliant with the underlying MG:


 

for all , where  is taken with respect to the underlying MG.  

𝒟 = {(sτ
h, aτ

h, bτ
h)}K,H

τ,h=1

ℙ𝒟 (rτ
h = r, sτ

h+1 = s |{(si
h, ai

h, bi
h)}

τ
i=1, {(ri

h, si
h+1)}

τ−1
i=1)

= ℙh (rh = r, sh+1 = s |sh = sτ
h, ah = aτ

h, bh = bτ
h),

h ∈ [H], s ∈ 𝒮 ℙ

• Markov property + compliant with the underlying MG  


• This assumption holds if the dataset is collected by a fixed behavior policy.


• Sequentially adjusted actions (aτ
h, bτ

h)



Linear Function Approximation

• Q-function admits a linear form: 


• Notation: 

Qπ,ν
h (x, a, b) = ⟨ϕ(x, a, b), wπ,ν

h ⟩

ϕτ
h = ϕ(sτ

h, aτ
h, bτ

h), ϕh = ϕ(sh, ah, bh)

Linear MG (Xie et al., 2020) 

rh(x, a, b) = ϕ(x, a, b)⊤θh, ℙh( ⋅ ∣ x, a, b) = ϕ(x, a, b)⊤μh( ⋅ ) .



Existing Results for Offline MDP
• Single policy (optimal policy) coverage is the necessary and sufficient condition for achieving sample-efficiency.


• Tabular (Rajaraman et al., 2021, Xie et al., 2021, Uehara and Sun 2021):


• Linear (Jin et al., 2021, Zenette et al., 2021, Yin et al., 2022):

Q: Single policy (NE) coverage is necessary and sufficient?

𝔼π*[
H

∑
h=1

ϕ⊤
h Λ−1

h ϕh], where Λh =
K

∑
k=1

ϕk
h(ϕk

h)⊤ + λ ⋅ I

sup
s,a,h

dπ*
h (s, a)

μh(s, a)



Single Policy (NE) Coverage is Insufficient
Consider the MGs  and  with payoff matrices:


         


ℳ1 ℳ2

G1 =
0.5 −1 0
1 0 1
0 −1 0

G2 = (
0 0 −1
1 0 −1
1 1 0 )


SubOptℳ1
(( ̂π, ̂ν), x) + SubOptℳ2

(( ̂π, ̂ν), x) ≥ 2

Either  or  is no less than 1
SubOptℳ1
(( ̂π, ̂ν), x) SubOptℳ2

(( ̂π, ̂ν), x)

NE coverage is insufficient




What Coverage Condition is Sufficient?

(
* −1 *
1 0 1
* −1 * )

{(π, ν) : (π, ν) is arbitrary} {(π*, ν) : ν is arbitrary} ∪ {(π, ν*) : π is arbitrary}

0.5 −1 0
1 0 1
0 −1 0

😄 😄

Ensure that  and  are the best response to each other — the definition of NEπ* ν*



Pessimistic Minimax Value Iteration (PMVI)

• Estimate linear coefficients (least-squares regression)


• Estimate Q-functions (pessimism)


• Calculate the output policy pair (NE subroutines)



Estimate Linear Coefficients
• Initialization: Set .


• At -th step, we estimate the linear coefficients by solving the following least-squares regression problem:


• Solving the above equation gives

VH+1( ⋅ ) = VH+1( ⋅ ) = 0

h

wh ← argminw

K

∑
τ=1

[rτ
h + Vh+1(x

τ
h+1) − (ϕτ

h)⊤w]2 + ∥w∥2
2,

wh ← argminw

K

∑
τ=1

[rτ
h + Vh+1(xτ

h+1) − (ϕτ
h)⊤w]2 + ∥w∥2

2.

wh ← Λ−1
h (

K

∑
τ=1

ϕτ
h(rτ

h + Vh+1(x
τ
h+1))),

wh ← Λ−1
h (

K

∑
τ=1

ϕτ
h(rτ

h + Vh+1(xτ
h+1))),

where Λh ←
K

∑
τ=1

ϕτ
h(ϕτ

h)⊤ + I .



Estimate Q-functions

• Pessimistic estimators:


• Penalty term:

Q
h
( ⋅ , ⋅ , ⋅ ) ← ΠH−h+1{ϕ( ⋅ , ⋅ , ⋅ )⊤ wh − Γh( ⋅ , ⋅ , ⋅ )},

Qh( ⋅ , ⋅ , ⋅ ) ← ΠH−h+1{ϕ( ⋅ , ⋅ , ⋅ )⊤wh + Γh( ⋅ , ⋅ , ⋅ )} .

Γh( ⋅ , ⋅ , ⋅ ) = β ϕ( ⋅ , ⋅ , ⋅ )⊤Λ−1
h ϕ( ⋅ , ⋅ , ⋅ )



Calculate the Output Policy Pair: NE Subroutine

• Solve two normal-form game: 


• Calculate V-functions:


• Output: .( ̂π = { ̂πh}H
h=1, ̂ν = { ̂νh}H

h=1)

( ̂πh( ⋅ ∣ ⋅ ), ν′￼h( ⋅ ∣ ⋅ )) ← NE(Q
h
( ⋅ , ⋅ , ⋅ )),

(π′￼h( ⋅ ∣ ⋅ ), ̂νh( ⋅ ∣ ⋅ )) ← NE(Qh( ⋅ , ⋅ , ⋅ )) .

Vh( ⋅ ) ← 𝔼a∼ ̂πh(⋅∣⋅),b∼ν′￼h(⋅∣⋅)Qh
( ⋅ , a, b),

Vh( ⋅ ) ← 𝔼a∼π′￼h(⋅∣⋅),b∼ ̂νh(⋅∣⋅)Qh( ⋅ , a, b) .



Main Results for PMVI

• A new notion: Relative Uncertainty:


• Data-dependent bound:  is decided by the offline dataset.


• Only depends on how well  are covered - no 
requirement on coverage of all policy pairs.


• Low relative uncertainty is the sufficient condition for achieving sample-efficiency. 

Λ = {Λh}h∈[H]

{(π*, ν) : ν is arbitrary} ∪ {(π, ν*) : π is arbitrary}

RU(𝒟, x) = inf
(π*,ν*) is NE { max {sup

ν

H

∑
h=1

𝔼π*,ν[ ϕ⊤
h Λh

−1ϕh s1 = x],sup
π

H

∑
h=1

𝔼π,ν*[ ϕ⊤
h Λh

−1ϕh s1 = x]}} .

Theorem: Let , it holds with probability at least  that
β = 𝒪(dH log(dHK/p)) 1 − p

SubOpt(( ̂π, ̂ν), x) ≤ 4β ⋅ RU(𝒟, x) .



Main Results for PMVI
Sufficient Coverage of Relative Information


Λh ≥ I + c1 ⋅ K ⋅ max { sup
ν

𝔼π*,ν [ϕhϕ⊤
h ∣ s1 = x], sup

π
𝔼π,ν* [ϕhϕ⊤

h ∣ s1 = x]} .

SubOpt(( ̂π, ̂ν), x) ≤ 𝒪̃(d3/2H2K−1/2)

Well-Explored Dataset

Suppose the dataset is collected by a fixed behavior policy pair . Moreover

.
(π̄, ν̄)

λmin(𝔼π̄,ν̄[ϕhϕ⊤
h ]) ≥ c, ∀h ∈ [H]

SubOpt(( ̂π, ̂ν), x) ≤ 𝒪̃(dH2K−1/2)



Proof Sketch
SubOpt(( ̂π, ̂ν), x) = V*, ̂ν

1 (x) − V ̂π,*
1 (x) = V*, ̂ν

1 (x) − V*1 (x)

(i)

+ V*1 (x) − V ̂π,*
1 (x)

(ii)

(i) = V*, ̂ν
1 (x) − V*1 (x)

≤ V1(x) − V*1 (x)

≤ V1(x) − Vπ′￼,ν*
1 (x)

=
H

∑
h=1

𝔼π′￼,ν*[⟨Qh(sh, ⋅ , ⋅ ), π′￼h( ⋅ |x) ⊗ ̂νh( ⋅ |x) − π′￼h( ⋅ |sh) ⊗ ν*h ( ⋅ |sh)⟩ |s1 = x]
−

H

∑
h=1

𝔼π′￼,ν*[ιh(sh, ah, bh) |s1 = x]

≤ 2
H

∑
h=1

𝔼π′￼,ν*[Γh(sh, ah, bh) |s1 = x]

≤ 2β ⋅ RU(𝒟, x)

 (Pessimism)V*, ̂ν
1 (x) ≤ V1(x)

 (definition of NE)V*1 (x) ≤ Vπ′￼,ν*
1 (x)

 ιh(x, a, b) = 𝔼[rh(sh, ah, bh) + Vh+1(sh+1) | (sh, ah, bh) = (x, a, b)] − Qh(x, a, b)

Decomposition Lemma

Definition of output policy & Pessimism

Definitions of Γh and RU(𝒟, x)



Low Relative Uncertainty is Necessary?

NE Coverage:

 😭

Low Relative Uncertainty:

😊


Q: Is there a coverage assumption weaker than low relative uncertainty 
but stronger than NE coverage that empowers efficient offline learning?

Other Conditions:

😐




Low Relative Uncertainty is Necessary 

Minimax Lower Bound: 


 ,


where  is an absolute constant and  is the initial state. The expectation is taken 
with respect to .

𝔼𝒟 [
SubOpt (Algo(𝒟); x)

RU(𝒟, x) ] ⩾ C′￼

C′￼ x
ℙ𝒟

Low relative uncertainty is necessary




Conclusion and Future Directions

• We propose the first computationally efficient  and nearly minimax optimal 
algorithm for offline linear MGs 


• We figure out that low relative uncertainty is the necessary and sufficient 
condition for achieving sample efficiency in offline linear MGs setup


• General function approximations, offline general-sum MGs…
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