Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets

Han Zhong
Peking University

Joint work with Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang

Outline

- Motivation and background
- Formulation and objectives
- Learning two-player zero-sum Markov games with offline datasets
- Conclusion and future directions

Success of RL

Go

Poker

Dota

Multi-agent
十
Decision-Making

Challenges of RL

Sample Efficiency

Computational Efficiency

AlphaGo Zero: trained on 3×10^{7} games, and took 40 days

Goal: design computationally efficient and sample-efficient learning algorithms

Online RL v.s. Offline RL

Online Reinforcement Learning

Environment

Agent

Offline Reinforcement Learning

Agent

Offline RL:
Learn from datasets Data distribution shift

Logged data

Online RL v.s. Offline RL

Healthcare

Auto-Driving

In these scenarios, either collecting data is costly and risky, or online exploration is impossible

Offline Multi-Agent RL (MARL)

Q1: Can we design sample-efficient equilibrium learning algorithms in offline MARL?

Q2: What is the necessary and sufficient condition for achieving sample efficiency in offline MARL?

Formulation and Objective: Offline Two-player Zero-sum Markov Game

Two player zero-sum Markov Game (MG) $\left(\mathcal{S}, \mathscr{A}_{1}, \mathscr{A}_{2}, H, r, \mathbb{P}\right)$

- \mathcal{S} : set of states; $\mathscr{A}_{1}, \mathscr{A}_{2}$: set of actions for the max-player/ the min-player
- H : horizon (the length of the game)
- $r_{h}\left(s_{h}, a_{h}, b_{h}\right) \in[0,1]$: reward function at step h
- $\mathbb{P}_{h}\left(s_{h+1} \mid s_{h}, a_{h}, b_{h}\right)$: transition probability at step h

Policy, value function, and Nash equilibria

- Policy: for the max-player: $\pi=\left\{\pi_{h}: \mathcal{S} \rightarrow \Delta\left(\mathscr{A}_{1}\right)\right\}$; for the min-player $\nu=\left\{\nu_{h}: \mathcal{S} \rightarrow \Delta\left(\mathscr{A}_{2}\right)\right\}$.
- V-function: $V_{h}^{\pi, \nu}\left(s_{h}\right):=\mathbb{E}_{\pi, \nu}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}, b_{h^{\prime}}\right) \mid s_{h}\right]$.
- Q-function: $Q_{h}^{\pi, \nu}\left(s_{h}, a_{h}, b_{h}\right):=\mathbb{E}_{\pi, \nu}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}, b_{h^{\prime}}\right) \mid s_{h}, a_{h}, b_{h}\right]$.
- Best response: $V_{h}^{\pi, *}=V_{h}^{\pi, \operatorname{br}(\pi)}=\inf _{\nu} V_{h}^{\pi, \nu}, \quad V_{h}^{*, \nu}=V_{h}^{\operatorname{br}(\nu), \nu}=\max _{\pi} V_{h}^{\pi, \nu}$.
- Nash equilibrium (NE): We say $\left(\pi^{*}, \nu^{*}\right)$ is an NE if π^{*} and ν^{*} are the best response to each other.

Metric (Sub-optimality gap): For any (π, ν) and $x \in \mathcal{S}$: $\operatorname{SubOpt}((\pi, \nu), x)=V_{1}^{*, \nu}(x)-V_{1}^{\pi, *}(x)$.

Data Collection Process

Assumption: The dataset $\mathscr{D}=\left\{\left(s_{h}^{\tau}, a_{h}^{\tau}, b_{h}^{\tau}\right)\right\}_{\tau, h=1}^{K, H}$ is compliant with the underlying MG:

$$
\begin{aligned}
& \mathbb{P}_{\mathscr{D}}\left(r_{h}^{\tau}=r, s_{h+1}^{\tau}=s \mid\left\{\left(s_{h}^{i}, a_{h}^{i}, b_{h}^{i}\right)\right\}_{i=1}^{\tau},\left\{\left(r_{h}^{i}, s_{h+1}^{i}\right)\right\}_{i=1}^{\tau-1}\right) \\
& \quad=\mathbb{P}_{h}\left(r_{h}=r, s_{h+1}=s \mid s_{h}=s_{h}^{\tau}, a_{h}=a_{h}^{\tau}, b_{h}=b_{h}^{\tau}\right),
\end{aligned}
$$

for all $h \in[H], s \in \mathcal{S}$, where \mathbb{P} is taken with respect to the underlying MG.

- Markov property + compliant with the underlying MG
- This assumption holds if the dataset is collected by a fixed behavior policy.
- Sequentially adjusted actions $\left(a_{h}^{\tau}, b_{h}^{\tau}\right)$

Linear Function Approximation

> Linear MG (Xie et al., 2020)
> $r_{h}(x, a, b)=\phi(x, a, b)^{\top} \theta_{h}, \quad \mathbb{P}_{h}(\cdot \mid x, a, b)=\phi(x, a, b)^{\top} \mu_{h}(\cdot)$.

- Q-function admits a linear form: $Q_{h}^{\pi, \nu}(x, a, b)=\left\langle\phi(x, a, b), w_{h}^{\pi, \nu}\right\rangle$
- Notation: $\phi_{h}^{\tau}=\phi\left(s_{h}^{\tau}, a_{h}^{\tau}, b_{h}^{\tau}\right), \phi_{h}=\phi\left(s_{h}, a_{h}, b_{h}\right)$

Existing Results for Offline MDP

- Single policy (optimal policy) coverage is the necessary and sufficient condition for achieving sample-efficiency.
- Tabular (Rajaraman et al., 2021, Xie et al., 2021, Uehara and Sun 2021):

$$
\sup _{s, a, h} \frac{d_{h}^{\pi^{*}}(s, a)}{\mu_{h}(s, a)}
$$

- Linear (Jin et al., 2021, Zenette et al., 2021, Yin et al., 2022):

$$
\mathbb{E}_{\pi^{*}}\left[\sum_{h=1}^{H} \phi_{h}^{\top} \Lambda_{h}^{-1} \phi_{h}\right], \quad \text { where } \Lambda_{h}=\sum_{k=1}^{K} \phi_{h}^{k}\left(\phi_{h}^{k}\right)^{\top}+\lambda \cdot I
$$

Q: Single policy (NE) coverage is necessary and sufficient?

Single Policy (NE) Coverage is Insufficient

Consider the MGs \mathscr{M}_{1} and \mathscr{M}_{2} with payoff matrices:

$$
G_{1}=\left(\begin{array}{ccc}
0.5 & -1 & 0 \\
1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \quad G_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right)
$$

$$
\text { SubOpt }_{M_{1}}((\hat{\pi}, \hat{\nu}), x)+\text { SubOpt }_{M_{2}}((\hat{\pi}, \hat{\nu}), x) \geq 2
$$

Either SubOpt $\mathscr{M}_{1}((\hat{\pi}, \hat{\nu}), x)$ or SubOpt $\mathscr{M}_{2}((\hat{\pi}, \hat{\nu}), x)$ is no less than 1

```
NE coverage is insufficient
```


What Coverage Condition is Sufficient?

$$
\{(\pi, \nu):(\pi, \nu) \text { is arbitrary }\}
$$

Ensure that π^{*} and ν^{*} are the best response to each other - the definition of NE

Pessimistic Minimax Value Iteration (PMVI)

- Estimate linear coefficients (least-squares regression)
- Estimate Q-functions (pessimism)
- Calculate the output policy pair (NE subroutines)

Estimate Linear Coefficients

- Initialization: Set $\underline{V}_{H+1}(\cdot)=\bar{V}_{H+1}(\cdot)=0$.
- At h-th step, we estimate the linear coefficients by solving the following least-squares regression problem:

$$
\begin{aligned}
& \underline{w}_{h} \leftarrow \operatorname{argmin}_{w} \sum_{\tau=1}^{K}\left[r_{h}^{\tau}+\underline{V}_{h+1}\left(x_{h+1}^{\tau}\right)-\left(\phi_{h}^{\tau}\right)^{\top} w\right]^{2}+\|w\|_{2}^{2}, \\
& \bar{w}_{h} \leftarrow \operatorname{argmin}_{w} \sum_{\tau=1}^{K}\left[r_{h}^{\tau}+\bar{V}_{h+1}\left(x_{h+1}^{\tau}\right)-\left(\phi_{h}^{\tau}\right)^{\top} w\right]^{2}+\|w\|_{2}^{2} .
\end{aligned}
$$

- Solving the above equation gives

$$
\begin{aligned}
& \underline{w}_{h} \leftarrow \Lambda_{h}^{-1}\left(\sum_{\tau=1}^{K} \phi_{h}^{\tau}\left(r_{h}^{\tau}+\underline{V}_{h+1}\left(x_{h+1}^{\tau}\right)\right)\right), \\
& \bar{w}_{h} \leftarrow \Lambda_{h}^{-1}\left(\sum_{\tau=1}^{K} \phi_{h}^{\tau}\left(r_{h}^{\tau}+\bar{V}_{h+1}\left(x_{h+1}^{\tau}\right)\right)\right), \\
& \text { where } \Lambda_{h} \leftarrow \sum_{\tau=1}^{K} \phi_{h}^{\tau}\left(\phi_{h}^{\tau}\right)^{\top}+I .
\end{aligned}
$$

Estimate Q-functions

- Pessimistic estimators:

$$
\begin{aligned}
& \underline{Q}_{h}(\cdot, \cdot, \cdot) \leftarrow \Pi_{H-h+1}\left\{\phi(\cdot, \cdot, \cdot \cdot)^{\top} \underline{w}_{h}-\Gamma_{h}(\cdot, \cdot, \cdot)\right\}, \\
& \bar{Q}_{h}(\cdot, \cdot, \cdot) \leftarrow \Pi_{H-h+1}\left\{\phi(\cdot, \cdot, \cdot)^{\top} \bar{w}_{h}+\Gamma_{h}(\cdot, \cdot, \cdot)\right\} .
\end{aligned}
$$

- Penalty term:

$$
\Gamma_{h}(\cdot, \cdot, \cdot)=\beta \sqrt{\phi(\cdot, \cdot, \cdot \cdot)^{\top} \Lambda_{h}^{-1} \phi(\cdot, \cdot, \cdot)}
$$

Calculate the Output Policy Pair: NE Subroutine

- Solve two normal-form game:

$$
\begin{aligned}
& \left(\hat{\pi}_{h}(\cdot \mid \cdot), \nu_{h}^{\prime}(\cdot \mid \cdot)\right) \leftarrow \operatorname{NE}\left(\underline{Q}_{h}(\cdot, \cdot, \cdot)\right), \\
& \left(\pi_{h}^{\prime}(\cdot \mid \cdot), \hat{\nu}_{h}(\cdot \mid \cdot)\right) \leftarrow \operatorname{NE}\left(\bar{Q}_{h}(\cdot, \cdot, \cdot)\right) .
\end{aligned}
$$

- Calculate V-functions:

$$
\begin{aligned}
& \underline{V}_{h}(\cdot) \leftarrow \mathbb{E}_{a \sim \hat{\pi}_{h}(\cdot \cdot), b \sim \nu_{h}^{\prime}(\cdot \cdot)} \underline{Q}_{h}(\cdot, a, b), \\
& \bar{V}_{h}(\cdot) \leftarrow \mathbb{E}_{a \sim \pi_{h}^{\prime}(\cdot \cdot \cdot), b \sim \hat{\nu}_{h}(\cdot \cdot)} \bar{Q}_{h}(\cdot, a, b) .
\end{aligned}
$$

- Output: $\left(\hat{\pi}=\left\{\hat{\pi}_{h}\right\}_{h=1}^{H}, \hat{\nu}=\left\{\hat{\nu}_{h}\right\}_{h=1}^{H}\right)$.

Main Results for PMVI

Theorem: Let $\beta=\mathcal{O}(d H \log (d H K / p))$, it holds with probability at least $1-p$ that

$$
\operatorname{SubOpt}((\hat{\pi}, \hat{\nu}), x) \leq 4 \beta \cdot \operatorname{RU}(\mathscr{D}, x)
$$

- A new notion: Relative Uncertainty:

$$
\operatorname{RU}(\mathscr{D}, x)=\inf _{\left(\pi^{*}, \nu^{*}\right) \text { is } \mathrm{NE}}\left\{\max \left\{\sup _{\nu} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*}, \nu}\left[\sqrt{\phi_{h}^{\top} \Lambda_{h}^{-1} \phi_{h}} \mid s_{1}=x\right], \sup _{\pi} \sum_{h=1}^{H} \mathbb{E}_{\pi, \nu^{*}}\left[\sqrt{\phi_{h}^{\top} \Lambda_{h}^{-1} \phi_{h}} \mid s_{1}=x\right]\right\}\right\}
$$

- Data-dependent bound: $\Lambda=\left\{\Lambda_{h}\right\}_{h \in[H]}$ is decided by the offline dataset.
- Only depends on how well $\left\{\left(\pi^{*}, \nu\right): \nu\right.$ is arbitrary $\} \cup\left\{\left(\pi, \nu^{*}\right): \pi\right.$ is arbitrary $\}$ are covered - no requirement on coverage of all policy pairs.
- Low relative uncertainty is the sufficient condition for achieving sample-efficiency.

Main Results for PMVI

$$
\begin{gathered}
\text { Sufficient Coverage of Relative Information } \\
\Lambda_{h} \geq I+c_{1} \cdot K \cdot \max \left\{\sup _{\nu} \mathbb{E}_{\pi^{*}, \nu}\left[\phi_{h} \phi_{h}^{\top} \mid s_{1}=x\right], \sup _{\pi} \mathbb{E}_{\pi, \nu^{*}}\left[\phi_{h} \phi_{h}^{\top} \mid s_{1}=x\right]\right\} . \\
\downarrow \\
\operatorname{SubOpt}((\hat{\pi}, \hat{\nu}), x) \leq \tilde{\mathcal{O}}\left(d^{3 / 2} H^{2} K^{-1 / 2}\right)
\end{gathered}
$$

Well-Explored Dataset

Suppose the dataset is collected by a fixed behavior policy pair $(\bar{\pi}, \bar{\nu})$. Moreover

$$
\lambda_{\min }\left(\mathbb{E}_{\bar{\pi}, \overline{\tilde{L}}}\left[\phi_{h} \phi_{h}^{\top}\right]\right) \geq c, \quad \forall h \in[H] .
$$

$$
\operatorname{SubOpt}((\hat{\pi}, \hat{\nu}), x) \leq \tilde{\mathscr{O}}\left(d H^{2} K^{-1 / 2}\right)
$$

Proof Sketch

$$
\operatorname{SubOpt}((\hat{\pi}, \hat{\nu}), x)=V_{1}^{*, \hat{\nu}}(x)-V_{1}^{\hat{\pi}^{*}}(x)=\underbrace{V_{1}^{*, \hat{\nu}}(x)-V_{1}^{*}(x)}_{\text {(i) }}+\underbrace{V_{1}^{*}(x)-V_{1}^{\hat{\pi}^{*}}(x)}_{\text {(ii) }}
$$

```
(i) \(=V_{1}^{*, \hat{\nu}}(x)-V_{1}^{*}(x)\)
    \(\leq \bar{V}_{1}(x)-V_{1}^{*}(x) \quad V_{1}^{*, \hat{\nu}}(x) \leq \bar{V}_{1}(x)\) (Pessimism)
    \(\leq \bar{V}_{1}(x)-V_{1}^{\pi^{\prime}, \nu^{*}}(x) \quad V_{1}^{*}(x) \leq V_{1}^{\pi^{\prime}, \nu^{*}}(x)\) (definition of NE )
    \(=\sum_{h=1}^{H} \mathbb{E}_{\pi^{\prime}, \nu^{*}}\left[\left\langle\bar{Q}_{h}\left(s_{h}, \cdot, \cdot\right), \pi_{h}^{\prime}(\cdot \mid x) \otimes \hat{\nu}_{h}(\cdot \mid x)-\pi_{h}^{\prime}\left(\cdot \mid s_{h}\right) \otimes \nu_{h}^{*}\left(\cdot \mid s_{h}\right)\right\rangle \mid s_{1}=x\right] \quad\) Decomposition Lemma
        \(\left.-\sum_{h=1}^{H} \mathbb{E}_{\pi^{\prime}, \nu^{*}\left[\bar{l}_{h}\right.}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}=x\right] \quad \bar{\tau}_{h}(x, a, b)=\mathbb{E}\left[r_{h}\left(s_{h}, a_{h}, b_{h}\right)+\bar{V}_{h+1}\left(s_{h+1}\right) \mid\left(s_{h}, a_{h}, b_{h}\right)=(x, a, b)\right]-\bar{Q}_{h}(x, a, b)\)
    \(\leq 2 \sum_{h=1}^{H} \mathbb{E}_{\pi^{\prime}, \nu^{*}}\left[\Gamma_{h}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}=x\right] \quad\) Definition of output policy \& Pessimism
    \(\leq 2 \beta \cdot \operatorname{RU}(\mathscr{D}, x) \quad\) Definitions of \(\Gamma_{h}\) and \(\operatorname{RU}(\mathscr{D}, x)\)
```


Low Relative Uncertainty is Necessary?

Low Relative Uncertainty is Necessary

Minimax Lower Bound:

$$
\mathbb{E}_{\mathscr{D}}\left[\frac{\operatorname{SubOpt}(\operatorname{Algo}(\mathscr{D}) ; x)}{\operatorname{RU}(\mathscr{D}, x)}\right] \geqslant C^{\prime},
$$

where C^{\prime} is an absolute constant and x is the initial state. The expectation is taken with respect to $\mathbb{P}_{\mathscr{D}}$.

Low relative uncertainty is necessary

Conclusion and Future Directions

- We propose the first computationally efficient and nearly minimax optimal algorithm for offline linear MGs
- We figure out that low relative uncertainty is the necessary and sufficient condition for achieving sample efficiency in offline linear MGs setup
- General function approximations, offline general-sum MGs...

Thank You!

Paper: https://arxiv.org/abs/2202.07511

