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Success of RL
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Challenges of RL

Sample i Computational
Efficiency Efficiency

AlphaGo Zero: trained on 3 X 10’ games, and took 40 days

Goal: design computationally efficient and

sample-efficient learning algorithms



Online RL v.s. Offline RL

Online RL: Offline RL:

Learn from interactions Learn from datasets
Exploration v.s. exploitation Data distribution shift

Offline Reinforcement Learning
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Online RL v.s. Offline RL

SRR
LIS

Healthcare Auto-Driving

In these scenarios, either collecting data is costly
and risky, or online exploration Is impossible



Offline Multi-Agent RL (MARL)

Q1: Can we design sample-efficient equilibrium
learning algorithms in offline MARL?

Q2: What is the necessary and sufficient

condition for achieving sample efficiency In
offine MARL?




Formulation and Objective:
Offline Two-player Zero-sum
Markov Game




Two player zero-sum Markov Game (MG) (&, <, A ,, H, r, P)

// «
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&' set of states; of |, o ,: set of actions for the max-player/ the min-player

H: horizon (the length of the game)

r,(s,, a,, by) € [0,1]: reward function at step A

P,.(sy.1 | Sy, ay, by): transition probability at step /2




Policy, value function, and Nash equilibria

» Policy: for the max-player: 7 = {m, : & = A(&,)}; for the min-playerv = {v, : & — A(H,)}.

H
g V—fUﬂCtIOn VZ’U(Sh) = _E’VI: Z }’h/(Sh/, ah/, bh/) ‘ Sh] .
h'=h H
¢ Q-fUﬂCthn QZ’D(Shs aha bh) . = _ﬂ,y[ Z rh’(Sh’a ah’a bh’) ‘ Sha aha bh] .

h'=h

e Best response: V;ZT,* — V;lt,br(ﬂ) — inf V;ZT,I/, VZ,V — V}ll)r(l/),v — max V}Jlf,v .
v

T

» Nash equilibrium (NE): We say (z*, v*) is an NE if 77 and v* are the best response to each other.

Metric (Sub-optimality gap): For any (z,v) and x € &

SubOpt((7, v),x) = V,*(x) = V*"(x) .




Data Collection Process

Assumption: The dataset ¥ = {(s,, a,, b}f)}fﬁl is compliant with the underlying MG:

L o
P (1 = 18501 = s H{(sp @ YV A G s, DY)

=P, (rh =18 =SS, =s,a,=a,,b, = b,j),
forallh € [H],s € &, where [P is taken with respect to the underlying MG.

 Markov property + compliant with the underlying MG

 This assumption holds if the dataset is collected by a fixed behavior policy.

» Sequentially adjusted actions (a,, b;)



Linear Function Approximation

» Q-function admits a linear form: Q/**(x, a, b) = (¢(x, a, b), w;"*)

» Notation: ¢, = ¢(s,,a,,b,), P, = ¢(sy,, a;, b,)



Existing Results for Offline MDP

Single policy (optimal policy) coverage is the necessary and sufficient condition for achieving sample-efficiency.

Tabular (Rajaraman et al., 2021, Xie et al., 2021, Uehara and Sun 2021):

dr (s, a)
sup

s.ah luh(sa Cl)

Linear (Jin et al., 2021, Zenette et al., 2021, Yin et al., 2022):

H K
=LY BTN Bl where Ay =Y @@+ A1
h=1 k=1

Q: Single policy (NE) coverage is necessary and sufficient?




Single Policy (NE) Coverage is Insufficient

Consider the MGs . | and ./ , with payoff matrices:

05 —1 0 0 0 -1
G1: 1 0 1 G2: 1 0 -1
0O -1 0 1 1 0

SubOpt , (7, V), x) + SubOpt ,, ((7,0), x) = 2

Either SubOpt ﬂl((ft, V), x) or SubOpt /%2((7%, V), x) is no less than 1

NE coverage is insufficient



What Coverage Condition is Sufficient?

{(m,v) : (&, ) is arbitrary } {(m*,v) : vis arbitrary} U {(x, v™) : & is arbitrary}

* 1 ok
1 0 1
1 ok

AA AA
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Ensure that 77 and v* are the best response to each other — the definition of NE



Pessimistic Minimax Value Iteration (PMVI)

* Estimate linear coefficients (least-squares regression)
* Estimate Q-functions (pessimism)

» Calculate the output policy pair (NE subroutines)



Estimate Linear Coefficients

+ Initialization: Set V,, () = Vi (-) =0,

« At h-th step, we estimate the linear coefficients by solving the following least-squares regression problem:

K
w, < argmin, Y [rf+V, (G, — (@D W+ [wl

=1

K
W, < argmin,, Y [rf + Vi Oof, ) — (@D Wl + [|wll3
7=1

 Solving the above equation gives

K
w, = AOY I+ Y, (L)),
7=1

K
Wy — AN COY DR + Vi (5, D)),

=1

K
where A, « Z gbZ(gbZ)T + 1.

=1



Estimate Q-functions

e Pessimistic estimators:
Qh(°a°a°)(_HH—h+1{¢(°9’9')Tﬂ/h_rh('a'a°)}a
Qh(°9°a°)(_HH—h+l{¢(°9°9°)TWh Fh(ﬂa)}

* Penalty term:

Fh(va)zﬂ\/¢(aa)TAl71¢(aa)



Calculate the Output Policy Pair: NE Subroutine

* Solve two normal-form game:
(@ 1 )5 (- 1)) < NE(@Q (-5 -, +)s
(7 1), 0+ 1+)) < NEQy (-, -, ).

e (Calculate V-functions:

Vi) = Bocapyomgo1n€,( > @5 D),

Vil ) Eqr it 1y On - s B).

¢ OUtpUt: (7% — {ﬁ-h}z]=1’i) — {Il/\h}gzl)



Main Results for PMVI

Theorem: Let f = O(dH log(dHK/p)), it holds with probability at least 1 — p that

SubOpt((#,0),x) < 4p - RU(D,x).

A new notion: Relative Uncertainty:

H H
o= i Ao (o0 3 e [VATAT 5 = o B e [R5 =]} }
(2, x) (n*,yglis NE{maX SUPZ ", G Ny Py |51 =X SUPZ . G Ny Py |51 =X

voop=1 T p=1
Data-dependent bound: A = { A}, is decided by the offline dataset.

Only depends on how well { (7, v) : vis arbitrary } U {(z, v*) : xis arbitrary} are covered - no
requirement on coverage of all policy pairs.

Low relative uncertainty is the sufficient condition for achieving sample-efficiency.



Main Results for PMVI

Sufficient Coverage of Relative Information
K -max { supEpe, [ |5y = 2], upE, e [yp] 151 =] |

1%

SubOpt((#,0),x) < O(d**H*K~"?)

Well-Explored Dataset
Suppose the dataset is collected by a fixed behavior policy pair (77, ). Moreover

Amin( _ﬁ,5[¢h¢};r]) >c, VhelH].

v

SubOpt((#, ), x) < O(dH*K~'"?)




Proof Sketch

SubOpt ((#,0),x) = V,*(x) = VI (x) = V,*(x) — V¥(x) + V¥(x) — VF ()

@) (ii)

(i) = V" (x) = V¥(x)

< Vikx) = ka (x) Vl* P(x) < V,(x) (Pessimism)

< Vi) = Vi (x) VE(x) < Vf/’”*(x) (definition of NE)

H
= Z =7 U [<Qh(5h, e ) [ X) @ Dy ( - [ X) = (- |sy) @ (- [sy)) |5y = x] Decomposition Lemma

H
— Z = S @y, b)) |51 = X1 1,(x,a,b) = E[r,(s,, a,, b)) + Vh 1S 1 sy apy by) = (x,a,b)] — Qh(x, a,b)

H
<2 2 = U p(Sps @y, b)) |51 = X1 Definition of output policy & Pessimism

<2p-RU(D,x) Definitions of I, and RU(Z, x)



Low Relative Uncertainty is Necessary?

NE Coverage Other Condltlons Low Relatlve Uncertalnty

Q: Is there a coverage assumption weaker than low relative uncertainty

but stronger than NE coverage that empowers efficient offline learning?




Low Relative Uncertainty is Necessary

Minimax Lower Bound:

SubOpt ( Algo(D);
@lu pt ( go()x)]za

RU(9D, x)

where C'is an absolute constant and x is the initial state. The expectation is taken
with respect to P .

Low relative uncertainty is necessary




Conclusion and Future Directions

* \We propose the first computationally efficient and nearly minimax optimal
algorithm for offline linear MGs

* We figure out that low relative uncertainty is the necessary and sufficient
condition for achieving sample efficiency in offline linear MGs setup

 General function approximations, offline general-sum MGs...
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Paper: https://arxiv.org/abs/2202.07511
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