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Robust Reinforcement Learning

What is robust reinforcement learning?

▶ Distributionally robust RL: training a robust policy that can perform well in perturbed

environments

▶ Corruption robust RL: finding a good policy from the corrupted data

This talk:

▶ Why do we need distributionally robust/corruption robust RL?

▶ How to perform efficient distributionally robust/corruption robust RL?
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Part 1.1: Why do we need distributionally robust RL?

Jiachen Hu
PKU

Chi Jin
Princeton

Liwei Wang
PKU

Provable Sim-to-real Transfer in Continuous Domain with Partial Observations. International

Conference on Learning Representations (ICLR) 2023.
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Offline Reinforcement Learning

Offline RL: learning optimal decisions from fixed offline datasets

Offline RL has achieved great success in various domains, but ...

Challenge: Sim-to-Real Gap
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Challenge: Sim-to-Real Gap

Example: Robotics

▶ Goal: Train a moving robot in a simulated environment.

▶ The simulated training environment has coefficient of friction µTrain Env.

▶ The environment to deploy the robot has coefficient of friction µTest Env. ̸= µTrain Env.

▶ A different moving dynamic between training and testing environments!

▶ Naively applying standard offline RL methods does not work.
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Challenge: Sim-to-Real Gap

A general problem: mismatch between the dynamics of training and testing environments:

PTrain Env.(·) ̸= PTest Env.(·)

Non-robust offline RL methods will fail to generalize to testing environments :(

Solution: distributionally robust RL

▶ Takes the discrepancy between training and testing environments into account :)

▶ Seeks to find an optimal decision policy that is robust to the worst case testing environment.

▶ Mathematically, combines the framework of

– Distributionally robust optimization (DRO)

– Markov decision process (MDP); Linear Quadratic Regulator/Gaussian (LQR/LQG)
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Distributionally Robust RL can Efficiently Reduce the Sim-to-Real Gap

Theoretical formulation:

▶ Simulator class E , i.e., a class of MDP/LQR/LQG constructed by the experimental designer.

▶ True environment Θ∗ ∈ E .

▶ For a policy π(E ) trained from the simulator class E , its sim-to-real gap is defined as

Gap(π(E )) = V ∗(Θ∗)− V π(E )(Θ∗),

where V ∗(Θ∗) is the optimal value function and V π(E )(Θ∗) is the value function of policy

π(E ) under the environment Θ∗.

▶ Distributionally robust training (also known as robust adversarial training):

πrobust = argmin
π

max
Θ∈E

[V ∗(Θ)− V π(Θ)].
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Distributionally Robust RL can Efficiently Reduce the Sim-to-Real Gap

Upper bound

Under certain regularity assumptions, we have

Gap(πrobust) ≤ Õ(
√
δEH),

where δE denotes the intrinsic complexity of simulator class E and H is the number of steps.

Lower Bound

Under same assumptions, for any policy π there exists a model class E and a choice of Θ∗ ∈ E

such that:

Gap(π) ≥ Ω(
√
H).

Distributionally robust RL reduces the sim-to-real gap efficiently (nearly optimally).
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Part 1.2: How to Solve Distributionally Robust RL Efficiently?1

Jose Blanchet
Stanford

Miao Lu
Stanford

Tong Zhang
HKUST

Double pessimism is provably efficient for distributionally robust offline reinforcement learning:

Generic algorithm and robust partial coverage. Short version at Conference on Neural

Information Processing Systems (NeurIPS) 2023
1Most of the slides in this part are credited to Miao Lu. 9 / 47



A Review of Standard Offline RL

Offline RL uses the framework of Markov decision process (MDP): M = (S,A, H,P⋆, R).

▶ We consider a finite-horizon decision process that ends after H decision steps.

▶ P⋆ = {P⋆
h}h∈[H] and R = {Rh}h∈[H].

Interaction protocol: an agent interacts with M in the form of episodes (H steps). In each episode:

▶ at each step h ∈ [H], the agent observes a state sh ∈ S and takes an action ah ∈ A.

▶ the env. transits to sh+1 ∼ P⋆
h(·|sh, ah), and the agent receives reward rh = Rh(sh, ah).

▶ the episode ends after the agent takes the action aH at step H.

rh−1

sh−1 sh

ah−1

rh

sh+1

ah

· · · · · ·
P⋆
h−1 P⋆

h
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A Review of Standard Offline RL

Goal of offline RL: given an offline dataset D collected a priori, with N trajectories (episodes):

D =
{(

sτh, a
τ
h, r

τ
h, s

τ
h+1

)}
h∈[H],τ∈[N ]

aτ
h ∼ πb

h(·|sτh), sτh+1 ∼ P⋆
h(·|sτh, aτ

h)

to find the optimal policy π⋆ = {πh}h∈[H] with πh : S 7→ A that maximizes the expected total reward:

π⋆ ∈ argmax
π={πh}h∈[H]:πh:S7→A

V π
1 (s1;P⋆)

▶ The total reward from step h:

V π
h (sh;P⋆) := Eπ,P⋆

[
H∑

h′=h

Rh′(sh′ , ah′)

∣∣∣∣∣sh; ah′ ∼ πh′(·|sh′), sh′+1 ∼ P⋆
h′(·|sh′ , ah′)

]

▶ No interaction with the real environment, only using offline data D.

▶ The policy is evaluated on the same dynamics P⋆ as the data generation process!
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A Unified Framework of Robust Offline RL

Robust offline RL considers discrepancy between training and testing environments, and seeks to

maximize the worst case expected total rewards in testing environments.

It uses the framework of robust Markov decision process (RMDP), denoted by

MΦ = (S,A, H,P⋆, R,Φ),

▶ Φ denotes the robust set (mapping) of transition dynamics,

▶ Interpretations of P⋆ and Φ:

– P⋆: the dynamics of the training environment (the transition to generate offline data), also

called the nominal transition kernel.

– P′ ∈ Φ: possible dynamics of the testing environments.

▶ Ususally, Φ is a “ball of distribution” centered at P⋆, e.g., ϕ-divergence ball, wasserstein ball.
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A Unified Framework of Robust Offline RL

Goal of robust offline RL: given an offline dataset collected a prior from environment P⋆:

D =
{(

sτh, a
τ
h, r

τ
h, s

τ
h+1

)}
h∈[H],τ∈[N ]

aτ
h ∼ πb

h(·|sτh), sτh+1 ∼ P⋆
h(·|sτh, aτ

h)

to find the optimal robust policy π⋆ : S 7→ A that maximizes the robust expected total rewards:

π⋆ ∈ argmax
π={πh}h∈[H]:πh:S7→A

min
P′={P′

h
}h∈[H]:P′h∈Φ(P⋆

h
)
V π
1 (s1;P′)

▶ V π
1 (sh;P′) is same defined as in standard offline RL, but now π⋆ maximizes the worst case value.

▶ No access to data from environment P′ ∈ Φ, but only the offline dataset D from P⋆.

The policy is evaluated on the worst case dynamics P′ ∈ Φ of the testing environments!
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Questions:

Q1: What is the general learning principle for distributionally robust offline RL?

Q2: Based on the principle, how to design a generic algorithm for distributionally robust offline RL

in the context of function approximation?

This work:

▶ For Q1, we identify that “Double Pessimism” is the desired general principle.

▶ For Q2, we propose the Doubly Pessimistic Model-based Policy Optimization (P2MPO) algorithm

framework for robust offline RL, with provable sample complexity guarantee.

▶ Furthermore, we extend our study to multi-agent decision making by investigating robust Markov

games (RMGs).
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More Detailed Setups

▶ Model space PM ⊆ P := {Ph(·|·, ·) : S ×A 7→ ∆(S)}, where S can be infinite. It holds P⋆
h ∈ PM.

▶ Robust mapping Φ : PM 7→ 2P . E.g., Φ(Ph) is the robust set of Ph ∈ PM.

▶ Robust value functions: we define for each P = {Ph}h∈[H] ⊂ PM,

V π
h,P,Φ(s) := min

P′h∈Φ(Ph)
1≤h≤H

V π
h (s;P′)

= min
P′h∈Φ(Ph)
1≤h≤H

Eπ,P′

[
H∑

h′=h

Rh′(sh′ , ah′)

∣∣∣∣∣sh; ah′ ∼ πh′(·|sh′), sh′+1 ∼ P′
h′(·|sh′ , ah′)

]
,

▶ Formally, the goal is to find a policy π̂ from D that minimizes its suboptimality gap from π⋆:

SubOpt(π̂; s1) := V π⋆

1,P,Φ(s1)− V π̂
1,P,Φ(s1),

Here π⋆ is the optimal robust policy. For simplicity, we assume a fixed s1 ∈ S.
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Main Challenges

Distributional shifts from two souces:

▶ The mismatch between the training environment dynamic P⋆ and the testing environment dynamics

P′ ∈ Φ.

– we only have data from P⋆, but we need to evaluate on distributions induced by P′ ∈ Φ.

▶ The mismatch between the behavior policy πb and the target policies π̂ to be learned.

– we only have data from π⋆, but we need to evaluate on distributions induced by learned π̂.

Large state space S:
▶ The state space can be infinite in general, where existing methods for tabular RMDPs fail.
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Pessimism: Handling Distributional Shifts

In standard offline RL, we have one source of distributional shift:

▶ The mismatch between the behavior policy πb and the target policies π̂ to be learned.

▶ A naive attempt would require the data to cover the distributions induced by all possible policy π̂.

▶ The solution: being “pessimism” in the face of data uncertainty that originates from the statistical

estimation of the transition kernel P⋆ [Jin et al., 2020, Uehara and Sun, 2021].

▶ With pessimism, one can efficiently learn the optimal policy with only “partial coverage data” –

only covering the trajectories induced by the optimal policy π⋆ (the mininal assumption).
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Double Pessimism: Handling Coupled Distributional Shifts

In robust offline RL, we have two coupled sources of distributional shift (P⋆ vs P′ ∈ Φ, and π⋆ vs π̂).

▶ Solution: “double pessimism”

– pessimism in the face of data uncertainty which originates from statistical estimation of the

nominal transition kernel P⋆;

– pessimism in the face of testing env. uncertainty which comes from the target of finding a

robust policy against the worst case testing env. P′ ∈ Φ(P⋆).

▶ However, Φ(P) relies on P.

– perform pessimism in an iterated manner!
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Algorithm Framework: P2MPO

Algorithm 1: Doubly Pessimistic Model-based Policy Optimization (P2MPO)

1. Model estimation step:

Obtain a confidence region P̂ = ModelEst(D,PM) of P⋆.

2. Doubly pessimistic policy optimization step:

Set the policy π̂ as

π̂ = argmax
π

JPess2(π)

where JPess2(π) is defined as a doubly pessimistic value estimator:

JPess2(π) := min
Ph∈P̂h
1≤h≤H

min
P′h∈Φ(Ph)
1≤h≤H

V π
1 (s1;P′)

▶ One can realize P2MPO by specifying the subalgorithm ModelEst(D,PM) for concrete RMDPs.
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Two Conditions on Model Estimation Subroutine

In order to ensure sample-efficient learning of the optimal robust policy, the algorithm framework builds

upon two abstract conditions on the model estimation subroutine ModelEst(D,PM).

Condition 1 (Accuracy).

With probability at least 1− δ, it holds that P⋆
h ∈ P̂h for any h ∈ [H].

▶ This simply means that the confidence region P̂ needs to contain the nominal transition kernel P⋆.
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Two Conditions on Model Estimation Subroutine

Condition 2 (Robust estimation error).

For some function of the sample size N and failure probability δ denoted by ErrΦh (N, δ) < +∞, with

probability at least 1− δ, it holds that for any P in the confidence region P̂,

E
(s,a)∼dπ

b

P⋆,h

[(
EΦ
h

(
s, a;Ph, V

π⋆

h+1,P,Φ
))2]

≤ ErrΦh (N, δ)

where the robust estimation error is defined as

EΦ
h (s, a;Ph, V ) := inf

P′
h
∈Φ(Ph)

Es′∼P′
h
(·|s,a)[V (s′)]− inf

P′
h
∈Φ(P⋆

h
)
Es′∼P′

h
(·|s,a)[V (s′)]

▶ This requires that each dynamic P in the confidence region P̂ induces a small error in the sense of

distributionally robust prediction between P and P⋆.

▶ For concrete examples of RMDPs, we will implement model estimation subroutines that satisfy

both Conditions 1 & 2 with ErrΦh (N, δ) ∼ Õ(1/N).
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Main Assumptions

Our generic theory towards the sample efficiency of P2MPO is based on two assumptions on the RMDP

and the data generation process respectively.

Assumption 1 (S ×A-rectangularity).

The mapping Φ induces S ×A-rectangular robust sets: for any P ∈ PM,

Φ(P) =
⊗

(s,a)∈S×A

P(s, a;P), where P(s, a;P) ⊆ ∆(S).

▶ Interpretation: the S ×A-rectangular assumption requires the mapping Φ(P) gives decoupled
robust sets for any P(·|s, a) across different state-action pairs.

▶ We will give concrete examples of the robust set P(s, a;P) for each (s, a)-pair later.

▶ Discussion: P2MPO can also handle other types of rectangular RMDPs (e.g., d-rectangular linear

RMDP).
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Main Assumptions

dπP,h(s, a): the state-action visitation measure at step h induced by policy π in dynamic P.

Assumption 2 (Robust partial coverage data).

We assume that the following robust partial coverage coefficient is finite:

C⋆
P⋆,Φ := max

1≤h≤H
max

Ph∈Φ(P⋆h)
1≤h≤H

E
(s,a)∼dπ

b

P⋆,h

[(
dπ

⋆

P,h(s, a)

dπ
b

P⋆,h(s, a)

)2]
< +∞, (1)

▶ This only requires that the offline data dπ
b

P⋆ can cover the trajectories induced by the optimal robust

policy dπ
b

P (for each P ∈ Φ(P⋆))!

▶ The robust consideration in C⋆
P⋆,Φ is because the policies are evaluated in a robust way in RMDPs.

▶ Weaker and more practice assumption than offline data from generative model or uniformly lower

bounded distribution over (s, a).
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Main Result: Suboptimality of P2MPO

Theorem 1 (Suboptimality of P2MPO).

Under Assumptions 1 and 2, suppose that D2MPO implements a sub-algorithm that satisfies Conditions

1 and 2, then with probability at least 1− 2δ,

SubOpt(π̂; s1) ≤
√

C⋆
P⋆,Φ ·

H∑
h=1

√
ErrΦh (N, δ).

▶ The suboptimality of P2MPO is characterized by the robust partial coverage coefficient C⋆
P⋆,Φ

(Assumption 2) and the sum of robust model estimation error ErrΦh (N, δ) (Condition 2).

▶ When ErrΦh (N, δ) achieves a rate of Õ(N−1), P2MPO enjoys a Õ(N−1/2)-suboptimality.

▶ In tabular setups, the robust partial coverage dependent is inevitable [Shi et al., 2022].
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▶ In tabular setups, the robust partial coverage dependent is inevitable [Shi et al., 2022].

24 / 47



Main Result: Suboptimality of P2MPO

Theorem 1 (Suboptimality of P2MPO).

Under Assumptions 1 and 2, suppose that D2MPO implements a sub-algorithm that satisfies Conditions

1 and 2, then with probability at least 1− 2δ,

SubOpt(π̂; s1) ≤
√

C⋆
P⋆,Φ ·

H∑
h=1

√
ErrΦh (N, δ).

▶ The suboptimality of P2MPO is characterized by the robust partial coverage coefficient C⋆
P⋆,Φ

(Assumption 2) and the sum of robust model estimation error ErrΦh (N, δ) (Condition 2).
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Our theory applies to most of known tractable RMDPs for robust offline RL and new models by:

▶ implementing the model estimation subroutine ModelEst(D,PM);

▶ specifying the robust model estimation error ErrΦh (N, δ).

Zhou et al. [2021] Shi and Chi [2022] Ma et al. [2022] This Work

S ×A-rectangular tabular RMDP ✓! ✓ ✗ ✓

d-rectangular linear RMDP ✗ ✗ ✓ ✓

S ×A-rectangular factored RMDP ✗ ✗ ✗ ✓

S ×A-rectangular kernel RMDP ✗ ✗ ✗ ✓

S ×A-rectangular neural RMDP ✗ ✗ ✗ ✓

S ×A-rectangular general RMG NA NA NA ✓

Table: ✓: can tackle this model with robust partial coverage data, ✓!: requires full coverage data to
solve the model, ✗: cannot tackle the model.

The yellow line denotes the models that are first proposed or proved tractable in this work.
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Offline RL with Corruption Data

Value functions in discounted MDPs:

V π(s) = Eπ,P
[ ∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s

]
, Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a) [V

π(s′)]

Goal: Find an optimal policy π∗ = argmaxπ Es0∼ρ0 [V π(s0)], where ρ0 is the initial distribution.

▶ Clean data (s, a, r, s′): (s, a) ∼ µ(·, ·), r = r(s, a), and s′ ∼ P (· | s, a), where µ(·, ·) is the
fixed behavior policy. Let πµ(a | s) denote the conditional distribution.

▶ Corrupted data D = {(si, ai, ri, s′i)}Ni=1: (si, ai) ∼ µ̃(·, ·), r = r̃(si, ai), and

s′i ∼ P̃ (· | si, ai). Let πD(a | s) denote the conditional distribution.

Definition (Cumulative Corruption)

Let ζ =
∑N
i=1(2ζi+log ζ ′i) denote the cumulative corruption level, where ζi and ζ

′
i are defined as

∥[T V ](si, a)− [T̃ V ](si, a)∥∞ ≤ ζi, max
{πD(a | si)
πµ(a | si)

,
πµ(a | si)
πD(a | si)

}
≤ ζ ′i, ∀a ∈ A.
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Implicit Q-Learning

IQL [Kostrikov et al., 2021] employs expectile regression to learn the value function:

LQ(θ) = E(s,a,s′)∼D
[
(r(s, a) + γVψ(s

′)−Qθ(s, a))
2
]
,

LV (ψ) = E(s,a)∼D [Lτ2(Qθ(s, a)− Vψ(s))] , Lτ2(x) = |τ − 1(x < 0)|x2.

IQL further extracts the policy using weighted imitation learning with a hyperparameter β:

Lπ(ϕ) = E(s,a)∼D[exp(β ·A(s, a)) log πϕ(a|s)], A(s, a) = Qθ(s, a)− Vψ(s).

Key observation:

IQL adopts the supervised policy learning instead of value-based policy learning.
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Performance of IQL under Diverse Data Corruption
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▶ Performance of offline RL algorithms under random attacks on the Hopper task.

▶ IQL demonstrates superior resilience to 3 out of 4 types of data corruption.

Key observation:

Supervised policy learning is more robust than value-based policy learning!
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Theoretical Guarantee

Let πIQL and π̃IQL be the learned policy by IQL with clean data and corrupted data, respectively.

Theorem

Assuming certain partial-coverage-type assumption is satisfied with coefficient M , it holds that

V πIQL − V π̃IQL ≤
√
2MRmax

(1− γ)2
[
√
ϵ1 +

√
ϵ2] +

2Rmax

(1− γ)2

√
Mζ

N
,

where ϵ1 and ϵ2 are imitation errors, ζ is the cumulative corruption, and N is the dataset size.

▶ Here ϵ1 and ϵ2 are imitation errors, which typically decay to zero as N goes to infinity.

▶ The corruption error term (second term) diminishes when ζ = o(N).

▶ Compared with LSVI-type algorithms:

– Provably efficient under diverse data corruption;

– Only requires ζ = o(N) instead of ζ = o(
√
N);
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Improvement 1: Observation Normalization

si =
(si − µo)

σo
, s′i =

(s′i − µo)

σo
,

µo =
1

2N

N∑
i=1

(si + s′i), σ2
o =

1

2N

N∑
i=1

[(si − µo)
2 + (s′i − µo)
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Improvement 2: Huber Loss

▶ Identify the heavy-tailed issue in the dynamics attack.

▶ Use the Huber regression

LQ = E(s,a,r,s′)∼D
[
lδH(r + γV (s′)−Q(s, a))

]
, where lδH(x) =

{
1
2δx

2, if |x| ≤ δ

|x| − 1
2δ, if |x| > δ

.

1000 500 0 500 1000
Q target

0

50

100

150

200

250

300

350 clean
reward attack
dynamics attack

(m)

Hopper 
 clean

Hopper 
 reward 
 attack

   Hopper 
  dynamics 

 attack

Walker 
 clean

Walker 
 reward 
 attack

Walker 
  dynamics 

 attack

0

1

2

3

4

5

6

Ku
rt

os
is

 

(n)

Hopper 
 clean

Hopper 
 reward 
 attack

Hopper 
  dynamics 

 attack

Walker 
 clean

Walker 
 reward 
 attack

Walker 
  dynamics 

 attack

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

 R
et

ur
n

×10
3

(o)

0 500 1000 1500 2000 2500 3000
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

Re
tu

rn

×10
3

Hopper IQL
Hopper IQL+Huber

Walker2d IQL
Walker2d IQL+Huber

(p)

32 / 47



Improvement 3: Penalizing Corrupted Data via In-dataset Uncertainty

▶ Train K independent Q-functions {Qθi}Ki=1. Let Qα be the α-quantile value.

LQ(θi) = E(s,a,r,s′)∼D[l
δ
H(r + γVψ(s

′)−Qθi(s, a))],

▶ Learn V -function based on Qα

LV (ψ) = E(s,a)∼D [Lτ2(Qα(s, a)− Vψ(s))] , Lτ2(x) = |τ − 1(x < 0)|x2.

▶ The policy is learned to maximize the α-quantile advantage-weighted imitation learning

objective:

Lπ(ϕ) = E(s,a)∼D [exp(βAα(s, a)) log πϕ(a|s)] , Aα(s, a) = Qα(s, a)− Vψ(s).
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Improvement 3: Penalizing Corrupted Data via In-dataset Uncertainty

Key Insight: penalizing corrupted data via in-dataset uncertainty.
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Robust IQL

Algorithm Robust IQL algorithm

1: Initialize policy πϕ and value function Vψ, {Qθi}Ki=1

2: Normalize the observation;

3: for training step= 1, 2, . . . , T do

4: Update value function Vψ to minimize

LV (ψ) = E(s,a)∼D [Lτ2(Qα(s, a)− Vψ(s))] ;

5: Update {Qθi}Ki=1 independently to minimize

LQ(θi) = E(s,a,r,s′)∼D[l
δ
H(r + γVψ(s

′)−Qθi(s, a))];

6: Update policy πϕ to maximize

Lπ(ϕ) = E(s,a)∼D [exp(βAα(s, a)) log πϕ(a|s)]
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Performance Under Random Corruption

Environment Attack Element BC EDAC MSG CQL SQL IQL RIQL (ours)

Halfcheetah

observation 33.4±1.8 2.1±0.5 -0.2±2.2 9.0±7.5 4.1±1.4 21.4±1.9 27.3±2.4

action 36.2±0.3 47.4±1.3 52.0±0.9 19.9±21.3 42.9±0.4 42.2±1.9 42.9±0.6

reward 35.8±0.9 38.6±0.3 17.5±16.4 32.6±19.6 41.7±0.8 42.3±0.4 43.6±0.6

dynamics 35.8±0.9 1.5±0.2 1.7±0.4 29.2±4.0 35.5±0.4 36.7±1.8 43.1±0.2

Walker2d

observation 9.6±3.9 -0.2±0.3 -0.4±0.1 19.4±1.6 0.6±1.0 27.2±5.1 28.4±7.7

action 18.1±2.1 83.2±1.9 25.3±10.6 62.7±7.2 76.0±4.2 71.3±7.8 84.6±3.3

reward 16.0±7.4 4.3±3.6 18.4±9.5 69.4±7.4 33.8±13.8 65.3±8.4 83.2±2.6

dynamics 16.0±7.4 -0.1±0.0 7.4±3.7 -0.2±0.1 15.3±2.2 17.7±7.3 78.2±1.8

Hopper

observation 21.5±2.9 1.0±0.5 6.9±5.0 42.8±7.0 5.2±1.9 52.0±16.6 62.4±1.8

action 22.8±7.0 100.8±0.5 37.6±6.5 69.8±4.5 73.4±7.3 76.3±15.4 90.6±5.6

reward 19.5±3.4 2.6±0.7 24.9±4.3 70.8±8.9 52.3±1.7 69.7±18.8 84.8±13.1

dynamics 19.5±3.4 0.8±0.0 12.4±4.9 0.8±0.0 24.3±5.6 1.3±0.5 51.5±8.1

Average score ↑ 23.7 23.5 17.0 35.5 33.8 43.6 60.0

Average degradation percentage ↓ 0.4% 68.5% 61.5% 42.3% 45.0% 31.2% 17.0%
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Performance Under Adversarial Corruption

Environment Attack Element BC EDAC MSG CQL SQL IQL RIQL (ours)

Halfcheetah

observation 34.5±1.5 1.1±0.3 1.1±0.2 5.0±11.6 8.3±0.9 32.6±2.7 35.7±4.2

action 14.0±1.1 32.7±0.7 37.3±0.7 -2.3±1.2 32.7±1.0 27.5±0.3 31.7±1.7

reward 35.8±0.9 40.3±0.5 47.7±0.4 -1.7±0.3 42.9±0.1 42.6±0.4 44.1±0.8

dynamics 35.8±0.9 -1.3±0.1 -1.5±0.0 -1.6±0.0 10.4±2.6 26.7±0.7 35.8±2.1

Walker2d

observation 12.7±5.9 -0.0±0.1 2.9±2.7 61.8±7.4 1.8±1.9 37.7±13.0 70.0±5.3

action 5.4±0.4 41.9±24.0 5.4±0.9 27.0±7.5 31.3±8.8 27.5±0.6 66.1±4.6

reward 16.0±7.4 57.3±33.2 9.6±4.9 67.0±6.1 78.1±2.0 73.5±4.85 85.0±1.5

dynamics 16.0±7.4 4.3±0.9 0.1±0.2 3.9±1.4 2.7±1.9 -0.1±0.1 60.6±21.8

Hopper

observation 21.6±7.1 36.2±16.2 16.0±2.8 78.0±6.5 8.2±4.7 32.8±6.4 50.8±7.6

action 15.5±2.2 25.7±3.8 23.0±2.1 32.2±7.6 30.0±0.4 37.9±4.8 63.6±7.3

reward 19.5±3.4 21.2±1.9 22.6±2.8 49.6±12.3 57.9±4.8 57.3±9.7 65.8±9.8

dynamics 19.5±3.4 0.6±0.0 0.6±0.0 0.6±0.0 18.9±12.6 1.3±1.1 65.7±21.1

Average score ↑ 20.5 21.7 13.7 26.6 25.8 33.1 56.2

Average degradation percentage ↓ 13.4% 71.2% 69.9% 66.8% 57.5% 46.0% 22.0%
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Conclusion

▶ Distributionally robust RL

– Training a robust policy that can perform well in perturbed environments.

– Distributionally robust RL can efficiently reduce the sim-to-real gap.

– General learning principle for distributionally robust offline RL — double pessimism.

▶ Corruption robust RL

– Finding a good policy from the corrupted data.

– Supervised policy learning (IQL) is more robust than value-based policy optimization.

– Robust IQL: observation normalization, Huber regression, and penalizing corrupted data via

in-dataset uncertainty.

Thank you!

https://hanzhong-ml.github.io/
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Example I: S ×A-rectangular kernel RMDP

Consider an RMDP with transition kernel parametrized by a reproducing kernel Hilbert space (RKHS).

▶ Model space PM: let H be an RKHS associated with a positive definite kernel

K : (S ×A× S)× (S ×A× S) 7→ R+, whose feature mapping is ψ : S ×A× S 7→ H, then

PM =
{
P(s′|s, a) = ⟨ψ(s, a, s′),f⟩H : f ∈ H, ∥f∥H ≤ BK

}
.

▶ Robust mapping Φ: for any P ∈ PM,

Φ(P) =
⊗

(s,a)∈S×A

Pρ(s, a;P), with Pρ(s, a;P) =
{
P̃(·) ∈ ∆(S) : D(P̃(·)∥P(·|s, a)) ≤ ρ

}
,

– In this work, we consider D(·∥·) as TV-distance or KL-divergence.

– Robust counterpart of kernel MDP [Yang et al., 2020, Cai et al., 2020, Li et al., 2022].

– Covers S ×A-rectangular tabular/linear MDPs as special cases.
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Example I: S ×A-rectangular kernel RMDP

To apply algorithm D2MPO and the theory, we need to specify (i) the subalgorithm ModelEst(D,PM),

(ii) the model estimation error function ErrΦh (n, δ).

Subalgorithm: model estimation I

Using the offline data D, we first construct the maximum likelihood estimator of P⋆:

P̂h = argmax
P∈PM

1

N

N∑
τ=1

log P(sτh+1|sτh, aτ
h).

After, we construct a confidence region P̂ for the MLE estimator,

P̂h =

{
P ∈ PM :

1

N

N∑
τ=1

∥P̂h(·|sτh, aτ
h)− P(·|sτh, aτ

h)∥21 ≤ ξ

}
,

where ξ > 0 is a tuning parameter controlling the size of P̂h. We let ModelEst(D,PM) = {P̂h}Hh=1.
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Example I: S ×A-rectangular kernel RMDP

Assumption 3: regularity of RKHS (informal)

The kernel K of the RKHS satisfies boundedness and exponential eigenvalue decay (λj ≲ exp(−jγ)).

Corollary: suboptimality of D2MPO for S ×A-rectangular kernel RMDP

Under Assumptions 1, 2, 3, by proper choosing the tuning parameter ξ, the suboptimality of D2MPO for

S ×A-rectangular kernel RMDP is

▶ when D is the TV-distance,

SubOpt(π̂; s1) ≤ O
(
H2 log(1/γ) ·

√
C⋆

P⋆,Φ/γ · log1+1/γ(NHVol(S)/δ)/N
)
,

▶ when D is the KL-divergence,

SubOpt(π̂; s1) ≤ O
(
H2 exp(H) log(1/γ)/ρ ·

√
C⋆

P⋆,Φ/γ · log1+1/γ(NHVol(S)/δ)/N
)
.
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Example II: S ×A-rectangular factored tabular RMDP

Consider a tabular RMDP with factored transition kernel P⋆
h(s

′|s, a) =
∏d

i=1 P
⋆
h,i(s

′[i]|s[pai], a).
▶ Model space PM: let S = Od, s = (s[1], · · · , s[d]) and s[i] is determined by (s[pai], a)

PM =

{
P(s′|s, a) =

d∏
i=1

Pi(s
′[i]|s[pai], a) : Pi : S[pai]×A 7→ ∆(O), ∀i ∈ [d]

}
.

▶ Robust mapping Φ: for any P(s′|s, a) =
∏d

i=1 Ph,i(s
′[i]|s[pai], a) ∈ PM,

Φ(P) =
⊗

(s,a)∈S×A

PFac,ρ(s, a;P ), with

PFac,ρ(s, a;P) =

{
d∏

i=1

P̃i(·) : P̃i(·) ∈ ∆(O), D(P̃i(·)∥Pi(·|s[pai], a)) ≤ ρi,∀i ∈ [d]

}
.

– Also, we consider D(·∥·) as TV-distance or KL-divergence.

– Robust counterpart of factored MDP [Kearns and Koller, 1999].

– How to utilize the factored structure to improve sample complexity?
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Example II: S ×A-rectangular factored tabular RMDP

To apply algorithm D2MPO and the theory, we need to specify (i) the subalgorithm ModelEst(D,PM),

(ii) the model estimation error function ErrΦh (n, δ).

Subalgorithm: model estimation II

Using the offline data D, we first construct the maximum likelihood estimator of each factor P⋆
i :

P̂h,i = argmax
Pi:S[pai]×A7→∆(O)

1

N

N∑
k=1

log Pi(s
τ
h+1[i]|sτh[pai], a

τ
h).

After, we construct a confidence region P̂ based on the MLE of each factor as

P̂h =

{
P (s′|s, a) =

d∏
i=1

Pi(s
′[i]|s[pai], a) :

1

n

N∑
i=1

∥(Pi − P̂h,i)(·|sτh[pai], a
τ
h)∥21 ≤ ξi, ∀i ∈ [d]

}
.

where ξi > 0 are tuning parameters controlling the size of P̂h. We let ModelEst(D,PM) = {P̂h}Hh=1.
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Example II: S ×A-rectangular factored tabular RMDP

To apply algorithm D2MPO and the theory, we need to specify (i) the subalgorithm ModelEst(D,PM),

(ii) the model estimation error function ErrΦh (n, δ).

Subalgorithm: model estimation II

Using the offline data D, we first construct the maximum likelihood estimator of each factor P⋆
i :

P̂h,i = argmax
Pi:S[pai]×A7→∆(O)

1

N

N∑
k=1

log Pi(s
τ
h+1[i]|sτh[pai], a

τ
h).

After, we construct a confidence region P̂ based on the MLE of each factor as

P̂h =

{
P (s′|s, a) =

d∏
i=1

Pi(s
′[i]|s[pai], a) :

1

n

N∑
i=1

∥(Pi − P̂h,i)(·|sτh[pai], a
τ
h)∥21 ≤ ξi, ∀i ∈ [d]

}
.

where ξi > 0 are tuning parameters controlling the size of P̂h. We let ModelEst(D,PM) = {P̂h}Hh=1.
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Example II: S ×A-rectangular factored tabular RMDP

Corollary: suboptimality of D2MPO for S ×A-rectangular factored tabular RMDP

Under Assumptions 1, 2, by proper choosing the tuning parameter {ξi}i∈[d], the suboptimality of

D2MPO for S ×A-rectangular factored tabular RMDP is

▶ when D is the TV-distance,

SubOpt(π̂; s1) ≤
√

C⋆
P⋆,ΦH2 ·

√
dC′

1

∑d
i=1 |O|1+|pai||A| log(C′

2Nd/δ)

N
,

▶ when D is the KL-divergence, by ρ = mini∈[d] ρi,

SubOpt(π̂; s1) ≤
√

C⋆
P⋆,ΦH2 exp(H)

ρmin
·

√
dC′

1

∑d
i=1 |O|1+|pai||A| log(C′

2Nd/δ)

N
.
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